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Production of halo particles by excitation of collective modes in high-intensity
charged particle beams

Sean Strasburg and Ronald C. Davidson
Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

~Received 14 June 1999!

This paper examines analytically and numerically the effects of self-consistent collective oscillations excited
in a high-intensity charged particle beam on the motion of a test particle in the beam core. Even under ideal
conditions, assuming a constant transverse focusing force~smooth focusing approximation!, and perturbations
about a uniform-density, constant radius beam, it is found that collective mode excitations, in combination with
the applied focusing force and the equilibrium test fields, can eject particles from the beam core to large radii.
Test particle orbits are calculated for collective oscillations withn51 and 2 radial mode structure, and an
estimate is obtained for the range of initial conditions for which particles will be expelled from the beam
interior. Resonances for meridional particles are found to be unimportant, while a class of particles with
nonzero angular momentum are found to participate in resonant behavior. Once expelled from the beam,
numerical solutions of the orbit equations indicate that Kolmogorov-Arnold-Moser curves, phase space span-
ning integrals of motion, confine particles within 1.5 times the beam radius for moderately low mode ampli-
tudes, but are successively destabilized for higher amplitudes.

PACS number~s!: 29.27.2a
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I. INTRODUCTION

It is increasingly important to develop improved theor
ical models of halo production and control for charged p
ticle beam propagation in high-intensity accelerators a
transport systems@1,2#, with applications to spallation neu
tron sources, heavy ion fusion, nuclear waste treatment,
tritium production. Halo formation mechanisms, such
beam mismatch and nonlinearities associated with non
form space-charge forces, have been explored both ana
cally and numerically@3,4#.

The core-particle model of Gluckstern@5# was an early,
successful attempt to describe the structure of the halo
erated by perturbing the beam about an rms-matched e
librium, leading to an envelope mismatch oscillation. Th
method simplified the dynamics by averaging over ter
away from a 2:1 parametric resonance, creating an integr
the motion. This integral was used to describe the part
behavior, and the predictions of halo structure closely
sembled numerical simulations. This averaging proced
however, also eliminated chaotic and diffusive elements
the trajectories. In addition, since initial conditions had to
chosen placing particles outside the beam surface, the m
did not describe the self-consistent expulsion of partic
from the beam core.

The analysis of envelope instabilities by Gluckstern@6#
described regions in parameter space in which the ampli
of the breathing mode of the beam core would grow in tim
This could lead to particles being expelled from the bea
but it required a gross instability which may not be presen
practical applications or may saturate at a low level. It d
not attempt to explain how quasisteady conditions could
sult in particles leaving the beam.

The idea of collimation@7# is highly relevant to attempts
to keep expelled particles away from the machine struct
PRE 611063-651X/2000/61~5!/5753~14!/$15.00
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It relies, however, on several important assumptions. T
distinction between halo and core particles must be predo
nantly preserved over time, so that halo particles should s
removed from the beam core in phase space@8,9#, and not
cycle in and out of the beam@10#. Methods of particle ex-
pulsion not explicitly included in the model must functio
sufficiently slowly that collimation is effective and does n
unacceptably diminish the beam brightness.

Many recent numerical simulations have studied the
fects of mismatch oscillations. Pakter and Chen@11# have
found with extensive test particle simulations th
Kolmogorov-Arnold Moser~KAM ! surfaces persist outsid
mismatched periodically focused Kapchinskij-Vladimirsk
beams for significant envelope oscillation amplitudes. O
moto and Ikegami@9# briefly discuss the possibility of a
stochastic instability in the core tail—the edge of the beam
phase space—caused by static field nonlinearities
uniform-focusing channels. For such a time-independ
case, however, motion inside the beam is regular due to
existence of a first integral.

Finally, the work of Qian and co-workers@12# and Fink,
Chen, and Marable@13# showed that nonlinear space-char
forces in periodically focused channels are able to expel p
ticles and excite them to significant radii. The static cha
density profiles assumed in the model, however, are not s
consistent, since they are not solutions of the Vlasov-Pois
equations. Although this research built on expectations
distributions more complicated than the Kapchinsk
Vladimirskij distribution@14# would lead to a lack of particle
confinement, it was not clear how rigorous the conclusio
could be made.

Despite the significant advances noted above, a fun
mental understanding of halo production is incomplete.
this paper, we consider a mechanism for the production
halo particles. Namely, we consider the effects of se
consistent collective oscillations excited in a high-intens
5753 ©2000 The American Physical Society
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ion beam on the motion of a test particle in the beam co
Even under ideal conditions, assuming a constant transv
focusing force~smooth focusing approximation!, and pertur-
bations about a uniform-density, constant-radius beam,
found that collective mode excitations, in combination w
the applied focusing force and the equilibrium self fields, c
eject particles from the beam core to large radii.

In Sec. II we present the assumptions which underlie
theoretical model for the beam equilibrium and perturbat
modes. This allows us to develop test particle equation
Sec. II C, which are then analyzed theoretically in Sec.
including resonant~Sec. III A! and nonresonant~Sec. III B!
behavior for particles initially in the beam interior. For e
tended dynamics of particles traveling both in the inter
and exterior regions, we discuss numerical results in Sec
Improvements to the analytical estimates are made in S
IV B, and the maximum excursion of particles out of th
beam is determined in Sec. IV C.

II. THEORETICAL MODEL AND ASSUMPTIONS

A. Equilibrium

We consider an intense nonneutral ion beam with be
radius R propagating in thez direction. The characteristic
axial momentum of a beam particle isgbmbbc, whereVb
5bbc5const is the directed axial velocity. Here,m is the
ion rest mass,c is the speed of light in vacuo,gb5(1
2bb

2)21/2 is the relativistic mass factor, and the ion charge
denoted by1Ze. In the present analysis, the applied tran
verse focusing force is modeled in the smooth focusing
proximation by

Ff oc~x!52gbmv f
2~xêx1yêy!, ~1!

wherev f is a constant focusing frequency with units of i
verse time. Here,x is the vector position,x5(x,y), related
to the scalar radial distance from the beam axis,r, by r
5(x21y2)1/2. The transverse displacement from the be
axis is ~x,y!. The effects of self-electric and self-magne
fields on the particle dynamics are retained in a s
consistent manner, consistent with the paraxial approxi
tion, and the assumption that Budker’s parameter,nB , is
much less than the relativistic mass factor,nB
5Nb(Ze)2/mc2!gb . HereNb is the number of beam ion
per unit axial length, related to the number density of be
ions nb(x,y,t), the number of particles per unit volume, b
Nb5*dx dy nb .

The assumptions of constant axial beam velocityVb and
paraxiality allow us to convert from units of time to axi
length s throughs5bbct. The wave number equivalent t
the transverse focusing frequency, the transverse focu
coefficientk, is defined byAk5v f /bbc, which has units of
inverse length. Beam quantities such asnb(x,y,t) will be
expressed asnb(x,y,s) through this conversion, and deriva
tives (•)8 will refer to spatial derivatives,d/ds(•). Since
they are equivalent, we will refer to frequency and wa
number interchangeably. We further assume axisymme
unbunched beam propagation (]/]u505]/]z), and intro-
duce the normalized dimensionless self-field potentialc de-
fined by
e.
rse
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c~r ,s!5
Ze

gb
3mbb

2c2 f~r ,s!. ~2!

In Eq. ~2!, r 5(x21y2)1/2 is the radial distance from the
beam axis, and the space-charge potentialf(r ,s) is deter-
mined self-consistently in terms of the density profi
nb(r ,s) from Poisson’s equation,r 21(]/]r )@r ]f/]r #5
24pZenb . A perfectly conducting cylindrical wall is lo-
cated at radiusr 5r w , where the boundary conditions i
f(r 5r w ,s)5const.

We assume a kinetic@14# or warm-fluid@15# Kapchinksij-
Vladimirskij beam equilibrium, and for this case the equili
rium density profilenb

0(r ,s) is uniform in the beam interior
with

nb
0~r ,s!5H Nb

pR2 , 0<r ,R~s!;

0, R~s!,r<r w.

~3!

In Eq. ~3!, Nb is constant, andR(s) is the solution to the
envelope equation@16#,

d2R

ds2 1S k2
K

R2DR5
e2

R3 , ~4!

wherek5v f
2/bb

2c2 is the transverse focusing coefficient,e is
the unnormalized transverse emittance, andK is the dimen-
sionless self-field perveance defined by@14#

K5
2Nb~Ze!2

gb
3m~bbc!2 . ~5!

For our purposes here, we further assume a matc
constant-radius beam equilibrium withR(s)5R0 , a con-
stant. The only explicit time dependence in the problem
therefore due to the eigenmode excitations, to be discus
below in Sec. II B. Using Eq.~4!, R0 is determined self-
consistently in terms ofk, K, ande2 from Eq. ~4!

S k2
K

R0
2DR05

e2

R0
3 . ~6!

For the constant-radius, uniform-density beam consis
with Eqs.~3! and~6!, it is readily shown that the equilibrium
self-field potentialc0(r ) is parabolic in the beam interior
and logarithmic outside. We obtain from Eq.~3! and Pois-
son’s equation

c05H 2
1

2
Kr̄ 2, 0< r̄ ,1,

2
1

2
K~112 ln r̄ !, 1, r̄< r̄ w.

~7!

Here, barred coordinates have been normalized by the
stant beam radiusR0 , so thatr̄[r /R0 and r̄ w[r w /R0 . The
boundary conditions setc0 at the wall equal to the constan
valuecw52(K/2) @112 ln r̄w#.

In the beam interior, the external forceFfoc harmonically
focuses the particle motion with undepressed wave num
v0[Ak, while the self-field potentialc0 harmonically defo-
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TABLE I. Normalized eigenmode potentialscn and eigenfrequenciesv̄n
2 for the infinite set of collective

modes described in Sec. II B. The frequencyv̄n is normalized to the undepressed tune,v̄n5vn /n0 .

Mode number Normalized eigenmode potentialcn Eigenfrequencyv̄n
2

1 12 r̄ 2 212n̄2

2 124r̄ 213r̄ 4 2114n̄2

3 129r̄ 2118r̄ 4210r̄ 6 2134n̄2

4 1216r̄ 2160r̄ 4280r̄ 6135r̄ 8 2162n̄2

5 1225r̄ 21150r̄ 42350r̄ 61350r̄ 82126r̄ 10 2198n̄2

n 1
2

@Pn21(122r̄ 2)1Pn(122r̄ 2)#
212n̄2(2n221)
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2. The ‘‘depressed’’ oscilla-

tion wave numbern̄ ~dimensionless units! is defined in terms
of the transverse focusing coefficientk, perveanceK, and
equilibrium beam radiusR0 by

n̄2512
K

kR0
2 . ~8!

The ‘‘depressed’’ oscillation wave numberv ~dimensional
units! is given by

v25kn̄25k2
K

R0
2 5v0

22
K

R0
2 . ~9!

B. Self-consistent perturbations

A key focus of the present analysis is to investigate
motion of a test ion in the combined fields of the appli
focusing field in Eq.~1!, the equilibrium self-field in Eq.~7!,
and the perturbed self-field associated with self-consis
collective oscillations excited in the beam.

We express the total self-field potential as

c~ r̄ ,s!5c0~ r̄ !1dc~ r̄ ,s!, ~10!

where c0( r̄ ) is defined in Eq.~7! for the case of a step
function equilibrium density profile considered here. For t
perturbed potentialdc( r̄ ,s), we make use of the warm-fluid
model developed by Lund and Davidson@15#. This macro-
scopic model neglects the heat flow@¹•Q.0#, but follows
the self-consistent evolution of the beam densitynb , flow
velocity Vb , and pressure tensorPb . For perturbations abou
a warm-fluid equilibrium with step-function density profi
@Eq. ~3!#, the analysis@15# predicts an infinite class of stabl
oscillations, each with its own eigenfrequency and rad
eigenfunction. The perturbed potentials are polynomial inr̄ 2

in the beam interior~oscillating sinusoidally in time!, and
vanish outside the beam, i.e.,

dcs5H (
n51

`

dcn~ r̄ 2!cos~vns1bn!, 0< r̄ ,1,

0, 1, r̄< r̄ w.

~11!

Here, $bn% are constant phases. The radial eigenfunct
dcn( r̄ 2) is defined in terms of the Legendre polynomials~of
the first kind!, Pn21(x) andPn(x), by
e

nt

e

l

n

dcn~ r̄ 2!5
An

2
@Pn21~122r̄ 2!1Pn~122r̄ 2!# ~12!

where$An% are constant amplitudes. The normal-mode os
lation wave numbers$vn% are defined by vn

25k@2
12n̄2(2n221)# in Ref. @15#. For completeness, the func
tional forms of the eigenmodes and the dispersion relati
for low values ofn are summarized in Table I.

A remarkable feature of the warm-fluid analysis is that t
normal modes$vn% are in excellent agreement with th
~stable! high-frequency oscillations calculated by Gluckste
@17# using a kinetic model based on the Vlasov-Poiss
equations. This conclusion is valid over a wide range of v
ues of the self-field perveanceK @15#.

In Eqs.~11! and~12!, the dimensionless amplitudes$An%
are required to be small for the linearization to be valid. W
choose to quantify this smallness by comparing the bulk r
electrostatic energy in thenth collective mode,En , to that in
the equilibrium electrostatic energy within the beam,E0 .
Electrostatic energyE is proportional to the square of th
local self-electric field,E5uEu2/8p5u¹fu2/8p. This is inte-
grated over time and volume to obtain the bulk rms val
We obtain

8pEn5
1

Tn
E

0

Tn
dt2pE

0

R0U ]

]r
fn~r ,t !U2

rdr , ~13!

wherefn(r ,t) is the self-field potential of thenth mode, and
Tn is its period. Furthermore, we express the dimensio
expansion coefficients$An% in Eq. ~12! as An5cnendnK,
whereK is the self-field perveance. Here,cn is defined by

cn
2152F2

]

] r̄ 2 dcn~ r̄ 2!G
r̄ 250

~14!

in order to normalize the coefficient of ther̄ term in the
oscillating polynomial to unity. In addition,en is chosen so
as to make the criterion of smallness—that the mode’s
ergy be small compared to the beam’s—take the nondim
sional form that some small parameter,dn

2 be much smaller
than unity, as follows.

We find for the harmonic potential generated by the eq
librium step-function density profile that

E05a2
Ro

4

4
, ~15!
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wherea5(Zepnb
0)2 andnb

05Nb /pR0
2 is the constant num

ber density of the flat-top beam. For then51 collective
mode, the definition ofc151/2, and we find that

E15d1
2a2

e1

2

R0
4

4
. ~16!

Comparing Eqs.~16! and ~15!, the condition thatE1 /E0!1
be equivalent tod1

2!1 requires thate152. Similarly, for the
n52 mode,c251/8, andE25d2

2e2R0
4/64, and soe2516. If

we denote the ratio of mode energy to beam energyGn

5dn
2, the definition ofcn anden together make the conditio

that the rms electrostatic energy in thenth collective mode is
small compared to the beam’s field energy reduce to

dn
2!1. ~17!

C. Test ion orbit equations

We consider the motion of an individual test ion in th
axisymmetric field configuration described by Eqs.~1! and
~10!. Because]/]u50 is assumed, the~normalized! canoni-
cal angular momentumP̄u5Pu /gbmbbcR0

2 is conserved,
i.e.,

R0
2P̄u5x

dy

ds
2y

dx

ds
5const. ~18!

Furthermore, it is readily shown that the equation of mot
for the normalized radial coordinater̄ (s)5r (s)/R0 of the
test ion is given by

d2r̄

ds2 1S k1
2

R0
2

]c

] r̄ 2D r̄ 5
P̄u

2

r̄ 3 . ~19!

In this equation,k5v f
2/bb

2c2 is the transverse focusing pa
rameter, andc( r̄ ,s)5c0( r̄ )1dc( r̄ ,s) is defined in Eqs.~7!
and ~11!. Equation~19! is a valid description of the test io
motion, both inside the beam (r̄ ,1) and outside the beam
( r̄ .1).

Finally, we shall assume, unless otherwise stated, tha
analysis is restricted to particle orbits that pass through
beam axis (x,y)5(0,0), and thus have zero angular mome
tum. ~We call these particlesmeridional.! For example, set-
ting y(s50)505(dy/ds)s50 gives P̄u50, and the orbit
equation forx̄(s)5x(s)/R0 reduces to motion in thex plane:

d2x̄

ds2 1Fk1
2

R0
2 S ]c

] r̄ 2D
r̄ 5 x̄

G x̄50. ~20!

For test-particle motion including angular momentum ins
the beam (r̄ ,1), we obtain by substituting the equilibrium
and perturbed self-field potentials

d2r̄

ds2 1Fk2
K

R0
2G r̄ 2

P̄u
2

r̄ 3 5
K

R0
2 (

n51

`

dncnen

]

] r̄
dcn~ r̄ !cos

3~vns1bn!, ~21!
n

he
e

-

e

where use has been made ofAn5cnendnK, andcn is defined
in Eq. ~14! and by the requirement Eq.~17!. Similarly, for
meridional motion inside the beam (ux̄u,1) we obtain

d2x̄

ds2 1Fk2
K

R0
2G x̄5

K

R0
2 (

n51

`

dncnen

]

] x̄
dcn~ x̄!cos~vns1bn!.

~22!

We also recall the relation between the undepressed w
number, v05Ak, and the space-charge-depressed w
number,v,

v25v0
22

K

R0
2 5k2

K

R0
2 , ~23!

in order to write the left-hand side of Eq.~22! as x̄91v2x̄.
For comparison, forP̄u

250 the equation to be solved fo
particle motion in the interior of a mismatched beam is

d2x̄

ds2 1S k2
K

R2~s! D x̄50, ~24!

where R(s) is obtained by solving Eq.~4!. On the other
hand, for P̄u

2Þ0, particle motion outside the beam (r̄ .1),
Eq. ~20! reduces to the nonlinear autonomous equation

d2r̄

ds2 1S k2
K

R0
2r̄ 2D r̄ 2

P̄u
2

r̄ 3 50, ~25!

where use has been made of Eqs.~20!, ~7!, and~11!, and to

d2x̄

ds2 1S k2
K

R0
2x̄2D x̄50 ~26!

for P̄u
250 andux̄u.1.

Equations~22! and ~26!, supplemented by the associate
definitions ofdcn , $vn%, etc., constitute the final form of the
test-particle orbit equations to be investigated analytica
and numerically in Secs. III and IV.

III. THEORY OF THE DYNAMICAL SYSTEMS

In this section we examine several features of the test
motion analytically, using numerical solutions as verific
tion.

There are two ways for a particle which would norma
be confined within the beam to leave the beam interior a
sample the highly nonlinear exterior region. A particle whi
would remain in the interior in the unperturbed case—a
thus be governed exclusively by the interior dynamics—m
either resonantly gain energy from the perturbation, with
possibility of large excursions, or nonresonantly absorb a
then give back energy.

In the resonantcase, the gain in energy is limited by th
tendency to fall out of resonance, and by the change in
namics when the particle finally exits the beam core. Ho
ever, the nature of the flat-top density profile in Eq.~3!
makes it easy for particles to stay in resonance until th
leave the beam. Since the unperturbed beam generates
monic motion for meridional particles in the interior, th
tunes of particles with different energies do not differ, pr
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vided the particle remains confined. In addition, since
fluid modes have purely oscillating perturbations, they do
cause a higher-order tune shift. Thus, if a fluid mode re
nance is encountered, it will affect all meridional particles
the beam.

In thenonresonantcase, while the gain in energy is sma
it may be enough to push particles over the ‘‘tune edge’
the beam radiusR0 . If a particle temporarily picks up en
ergy, but is ejected from the beam core in the process,
new dynamical system may prevent it from simply giving t
energy back and executing small oscillations around its
perturbed orbit.

Although a complete solution to the full problem deman
that two dynamical regimes—interior and exterior to t
beam—be connected smoothly together, the question
whether particles which normally would be confined can
cape at all can be answered by simply noting under w
conditions advancing the particle motion in the interior d
namical system forward causes particles to leave the be

A. Resonant behavior

1. nÄ1 mode for meridional test ions

We begin by considering a beam supporting only ann
51 mode. The normalized potential for this mode isc1
5A1(12 x̄2), where the amplitude coefficientAn5d1 . Us-
ing this potential in Eq.~21!, we find for motion inside the
beam,

d2r̄

ds2 1S k2
K

R0
2D r̄ 2

P̄u
2

r̄ 3 2
K

R0
2 d1r̄ cos~v1s1b1!50.

~27!

Equation ~27! can be further reduced, using the definitio
v25v0

22K/R0
2 in Eq. ~9!, and setting the arbitrary phaseb1

equal to zero. In addition, we assume meridional partic
i.e., P̄u

250. This gives the equation

d2x̄

ds2 1v2x̄2d1~v0
22v2!x̄ cosv1s50. ~28!

This is a Mathieu equation@18# of the form

d2y

dt2
1~v21d cosvdt !y50, ~29!

with well-known resonances nearvd /v51 ~fundamental
resonance! andvd /v52 ~principal, or Mathieu resonance!.
In our case, it is seen from Table I thatv1 is given byv1

2

52v0
2(11 n̄2).

It is illuminating to compare Eq.~28! with the equation
for a small envelope oscillation. Rather than takingR5R0
5const in Eq.~4!, we assumeR(s)5R0(111/2de cosves).
The envelope oscillation frequency for this small-amplitu
mismatch mode is given byve

252v0
2(11 n̄2), which is the

same as the frequencyv1 for the n51 collective mode. If
we replaceK/R0

2 by K/R2(s) in the orbit equation forx̄(s) in
the beam interior (21, x̄,1), we obtain Eq.~24!. Linear-
izing for smallde taking dc50, this equation becomes
e
t
-

t

e

-

s

of
-

at
-

.

s;

d2x̄

ds2 1v2x̄2de~v0
22v2!x̄ cosves50. ~30!

Takingde5d1 , Eqs.~28! and~30! are identical. For meridi-
onal motion outside the beam the orbit equations for then
51 mode and the envelope mismatch mode are also
same, i.e.,

d2x̄

ds2 1S k2
K

R0
2x̄2D x̄50. ~31!

However, it is important to distinguish what constitut
outside the beam for the two cases. The fluid modes
derived for perturbations about a constant radius beam
outside the beamcorresponds toux̄u.1, or uxu.R0 . The
mismatch ripple, however, requiresuxu.R(s)5R0(1
11/2de cosves). This distinction has practical consequenc
We shall neglect resonances for the moment. In both
mismatch case and then51 case, the test particle equation
a time-modulated harmonic oscillator, and, unless a Math
resonance is encountered, tori are therefore invariant.

In the case of amismatchedbeam with no other collective
perturbations, if a meridional test particle is launched at
beam edge with the same radial velocity as the be
envelope—or with any energy less than this—the equation
motion predicts that it will remain confined for all time. I
the case of an envelope mismatch, the envelopeR(s) is itself
the projection of an energy level@2# onto thex axis. That is,
the stability of the beam envelope, which itself correspon
to maximal-radius particle trajectories, guarantees thestabil-
ity and confinementof particle orbits under an envelope mi
match. Therefore, the projected phase space trajectory w
yields the beam radiusR(s) cannot be crossed except b
resonant breaking of tori, and all particles initially within th
beam remain confined in the beam interior. Figure 1 sho
the motion of a particle with energy slightly below th
needed to escape the beam core.

For a constant radius beam supporting acollective mode,
however, the beam edgeR0 is not the projection of an energ
level. The self-field potential caused by the modes do not
general, have nodes atr 5R0 , and so the energy associate
with the beam edge oscillates in time. Since particles t
would normally be inside a mismatched beam might be o
side a beam supporting ann51 collective mode, experienc
ing the exterior nonlinear forces, there is no guarantee
invariant tori. That is, since the equations of motion for
linearized mismatch and then51 mode are identical,stabil-

FIG. 1. Test ion trajectory~light line! in a beam~dark line!
launched at 1.8 times the rms-matched valueRrms. The test ion was
initially just inside the beam edge. The space-charge depres
factor is n̄251/3.
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5758 PRE 61SEAN STRASBURG AND RONALD C. DAVIDSON
ity of particle orbits inside the beam is also guaranteed by
stability of the envelope, but confinement is not guarante
since particles may sample the exterior region under the
fluence of ann51 mode when they would not in a mis
matched beam. If the particle in Fig. 1 were inside a be
supporting ann51 mode and not a mismatch oscillatio
mode, the particle would in fact escape from theR5const.
beam. In practice, particles near the edge escape the b
and experience significant energy changes. This behavi
treated further in Sec. III B.

Returning to examining resonant behavior, we reiter
the impossibility of encountering the Mathieu resonan
nearv152v. As the test particle trajectories begin to com
into resonance with the Mathieu mode, the resona
strength approaches zero@19#. Heuristically, this can be see
more clearly by normalizing the depressed frequency
unity in either the mismatch equation or then51 equation
so that there is only one normalized frequency in the pr
lem. We introduce a new scaled times̄5vs. Thus Eq.~28!
transforms into

d2x̄

ds̄2 1 x̄2d1

v0
22v2

v2 x̄ cosS v1

v
s̄D50. ~32!

Using the fact thatv25 n̄2v0
2, and that

v1
2

v2 5
2v0

2~11 n̄2!

v0
2n̄2 , ~33!

we obtain

d2x̄

ds̄2 1 x̄2d1

12 n̄2

n̄2 x̄ cosS s̄A21
2

n̄2D 50. ~34!

Thus, when the time-dependent term in Eq.~34! term ap-
proaches cos 2s̄ asn̄→1, the mode coefficient proportional t
12 n̄2 approaches zero. The particle trajectories asn̄→1 are
confirmed numerically to be well behaved.

Hence, we can conclude that there are no important re
nances for a meridional particle inside a beam supporting
n51 collective mode.

2. nÄ2 mode for meridional test ions

The x̄3 dependence of then52 mode~see Table I! raises
the possibility of a nonlinear parametric resonance. We w
find that, although resonances would exist if the depres
frequency and the second mode eigenfrequency could be
ied independently, they are ‘‘inaccessible’’ due to the fun
tional relationship betweenv andv2 .

The equation of motion for a test particle with gene
value of canonical angular momentumP̄u in a beam support-
ing ann52 collective mode is~for r̄ ,1)

d2r̄

ds2 1S k2
K

R0
2D r̄ 2

P̄u
2

r̄ 3 2d2

K

R0
2 S r̄ 2

3

2
r̄ 3D cos~v2s1b2!50.

~35!

Note that the parametric term proportional tod2 vanishes
when, during the test ion’s trajectory, the condition

r̄ 5A2/3 ~36!
e
d,
n-

am
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e
s

e
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ed
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-

l

is satisfied: we will examine this issue in Sec. II B. We co
vert the coefficients in Eq.~35! to wave numbers, choose th
arbitrary phaseb2 to be zero, and consider only meridion
test ions (P̄u

250), changing r̄ to x̄. The Hamiltonian
H( x̄,p̄,s) describing the motion in Eq.~35! under these con-
ditions is given by~for ux̄u,1)

H5
1

2
p̄21

1

2
v2x̄22d2~v0

22v2!S 1

2
x̄22

3

8
x̄4D cosv2s,

~37!

where p̄ denotesdx̄/ds. From this Hamiltonian, it appear
that the principal resonances for cubic nonlinearities in pa
metric equations are atv2 /v562,64. This claim will be
verified below in Sec. III B. Referring to Table I, we find tha

v2
2

v2 5
2~117n̄2!

n̄2 . ~38!

A plot of v2 /v is presented in Fig. 2. From this it is clea
that, over the entire range of space-charge depression
ratio v2 /v never approaches the values of 2 or 4.

Therefore, fundamental and principal resonances are
expected to be important for then52 collective mode.

3. Higher-order modes

In fact, the functional relationship between thenth mode
frequency vn and the depressed transverse frequencyv
makes these principal resonances inaccessible for all m
numbersn. The Hamiltonian expansions predict resonanc
for the nth mode atvn /v562m for integersm<n. Using
the dispersion relation in Table I, we obtain

vn
2

v2 5
212n̄2~2n221!

n̄2 8gn~ n̄2!. ~39!

Defining n̄52n221 and denotingu5 n̄2, we find for the
first two derivatives ofgn(u)52(11n̄u)/u,

dgn~u!

du
5

22

u3 ~11n̄u!1
2

u
n̄,

~40!
d2gn~u!

du2 5
4

u3 .

FIG. 2. Plot of the ratio ofn52 collective mode frequency to
the depressed transverse particle frequency,v2 /v, as a function of
space-charge depression factorn.
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Setting the first derivative equal to zero yields the contrad
tion 11n̄u5n̄x, and so the only extrema are on the boun
ary pointsu50,1. Since the second derivative is positive
this region, the minimum occurs atu51, and from Eq.~39!,
gn(u) evaluated atu51 is equal to 4n2. Hence, as before
when n̄2→1 and the ratio of mode frequency to depress
transverse frequency approaches from above the upper
resonance,vn /v562n, the coefficient which multiplies the
mode amplitude, (12 n̄2)/ n̄2, approaches zero.

4. Test ions with nonzero angular momentum

As a simple example for particles with nonzero angu
momentumP̄uÞ0, we consider perturbations around an
terior circular orbit with constant radiusr̄ c5r c /R0 . Assum-
ing dc50, the value of angular momentum which is cons
tent with this unperturbed circular motion is easily fou
from Eq. ~19! by imposing the conditionr̄ c5const. This
gives

S k2
K

R0
2D r̄ c2

P̄u
2

r̄ c
3 50, ~41!

which has the solutionP̄u
25 r̄ c

24kn̄2.

For a given value ofP̄u
2, the particle motion in the equi

librium orbit is purely azimuthal with constant radiusr̄ c .
The frequency of motion around this circular orbit isv2

5kn̄2. If, however, the ion is perturbed radially slightl
away from the equilibrium, the trajectory will consist o
small radial oscillations aboutr̄ 5 r̄ c . ~This also holds for a
small perturbation in the azimuthal direction, which
equivalent to a small change inP̄u

2, and hence in the equi
librium radius.! These small radial deviations oscillate with
frequency different from the azimuthal motion: we expe
from dynamical considerations that the frequency of sm
radial deviationsvc will be twice the frequency of azimutha
motion v, and this can be verified by direct calculation. U
ing the equilibrium angular momentum found from Eq.~41!,
we linearize Eq.~21! for small perturbationsd r̄ about the
orbit r̄ 5 r̄ c . The linearized equation of motion for the pe
turbed radiusd r̄ 5 r̄ 2 r̄ c with no collective modes present
d r̄ 14kn̄2d r̄ 50, and hence the frequency of small rad
oscillations about this circular orbit is found to be

vc
254kn̄2. ~42!

The perturbed radial frequencyvc is indeed twice the equi
librium azimuthal frequency, and is furthermore independ
of the equilibrium radiusr̄ c . If these small radial orbit de
viations resonate with the collective mode, oscillating w
independent eigenfrequencyvn , the particle will experience
an energy change. The radial deviations, for example, m
cause the perturbed particle trajectory to be outside the e
librium circle r̄ c when the electrostatic collective mode pe
turbation is decreasing towards the edge of the beam,
inside the equilibrium circle when the reverse occurs.~See
Fig. 3.!

We now consider in particular the linearization of E
~27!, the equation of motion in a beam supporting ann51
collective mode, for small perturbationsd r̄ away from an
equilibrium circle r̄ c such thatd r̄ 5 r̄ 2 r̄ c . The equation
-
-

d
ost

r
-

-

t
ll

l

t

y
ui-

nd

takes the form d r̄ 91vc
2d r̄ 2d1(v0

22v2)(d r̄ 1 r̄ c)cosv1 s
50, which is again a Mathieu-type equation, now both pa
metrically and externally driven. The frequency of then
51 collective mode is given byv1

25k(212n̄2),) and there-
fore the ratio of the frequencies is

v1
2

vc
2 5

212n̄2

4n̄2 . ~43!

The ratio in Eq.~43! is equal to unity~fundamental reso-
nance! for n̄251. In addition, there is no nonlinear frequenc
shift in the radial oscillation about the equilibrium orbi
Therefore, forn̄2.1, perturbed radial oscillations may gro
in amplitude by being in phase with the collective mod
That is, the particle motion may be outside the equilibriu
circular orbit r̄ c when the quadraticn51 mode potential is
decreasing with radius, and inside the equilibrium circle o
half period later when the collective mode is increasing w
radius. Two effects will limit this energy gain. First, whe
the particle orbit grows sufficiently large, it will encounte
the finite beam radius, and sample the nonlinear fields in
exterior of the beam, leading to rapid frequency detuning a
subsequent energy loss. Second, as mentioned above
collective mode is multipled by a coefficient proportional
12 n̄2. Since the fundamental resonancevc5v1 occurs at
n̄251, energy gain must occur near resonance, but before
coefficient cuts off the mode. Therefore, the small detun
away from resonance necessitated by the coefficient 12 n̄2

will lead to eventual stability of the particle orbit. Figure

FIG. 3. Representative perturbation about a circular orbit:~a!
the oscillations in and out of the reference orbit may resonate w
the collective mode, and~b! cause test ion energy gain. The bea
parameters in~b! are n̄2.0.95 andG52.5%.
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illustrates a test ion trajectory being expelled from de
within the beam near the fundamental resonance. The b
is tenuous, with space-charge depression factor ofn̄2

.0.95.

B. Nonresonant behavior

We now consider the effects of nonresonant ene
changes on the test particle dynamics. Since the particle
only gain a limited amount of energy before giving it bac
nonresonant trajectory changes, while they may have an
fect on beam emittance, will dramatically affect the sing
particle dynamics only if the mode causes the particle
sample both the beam interior and the exterior region whe
normally would not, and thus is only of interest for particl
with energy ‘‘close’’ to the escape energy from the bea
core.

We treat explicitly then52 collective mode: then51
mode can be included as a special case. From numerica
ion studies, then51 andn52 modes appear to be the mo
likely to expel significant numbers of particles. In the equ
tion describing the test ion trajectory in the beam interi
Eq. ~21!, the polynomial (]/] r̄ )dcn( r̄ ) generally hasn
nodes$r̄n

1 ,...,r̄n
n% in the interior. At these nodes, the value

the perturbed radial self-field always vanishes, as allude
in Eq. ~36!. ~See Fig. 4.! It is difficult for particles whose
equilibrium trajectories achieve a maximum radiusr̄ 0, r̄n

i to
gain enough energy to exceed the radiusr̄n

i . As the particle
gains energy and is pushed towardsr̄n

i , the parametric driv-
ing term approaches zero, thereby cutting off the ene
gain. This increasing density of nodes stratifies the beam
‘‘zones’’ between nodes, preventing all but those test io
sampling the outermost zone from gaining sufficient ene
to be expelled. In addition, from Fig. 4 it is clear that th
outermost zone (r̄n

n,1), between the last node and the be
radius r̄ 51, shrinks to zero thickness asn increases andr̄n

n

→1. Then51 andn52 collective modes have the large
zones capable of expelling particles easily from the beam

The perturbation treatment consists of finding a trans
mation which pushes the perturbations in the Hamiltonian
higher order, which can then be neglected, leaving an i
grable, approximate, lower-order Hamiltonian@20#. This
simpler system will then be used to estimate the range
normally confined particles inside the beam edge which
sample the highly nonlinear region exterior to the beam.

The one-dimensional nonautonomous Hamiltonian for
beam interior, H( x̄,p̄,s), is defined in Eq.~37!, where p̄
denotesdx̄/ds. The position and momentum are transform

FIG. 4. Radial locationr̄n
i ( x̄) of nodes as a function of mod

numbern.
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into action-angle form to prepare the Hamiltonian for c
nonical perturbation theory. The actionJ, invariant in the
unperturbed case, and the angleu, linearly advancing in the
unperturbed case, are related to the original coordinates

x̄8~2J/v!1/2sinu,
~44!

p̄8~2Jv!1/2cosu,

and the equilibrium trajectories in~J, u! space are straigh
lines with

J5const,
~45!

u5vs1u0 .

The canonically transformed Hamiltonian,H(J,u,s)
5H( x̄,p̄,s), with e5d2(v0

22v2), is given by

H5vJ2eF S J

v D sin2 u2
3

2 S J

v D 2

sin4 uGcosv2s. ~46!

Using standard perturbation theory@20#, we expressH
.H01eH1 and let S. J̃u1eS1 generate the near-identit
transformations

J5
]S

]u
. J̃1e

]S1

]u
,

~47!

ũ5
]S

] J̃
.u1e

]S1

] J̃
.

We further assume a canonical transformation,H̃( J̃,ũ)
5H(J,u), and expand about the small change in~J, u!. This
gives

H̃~ J̃,ũ !5H0~ J̃!1eH1~ J̃,ũ !1e
]S1

]ũ

]H0

] J̃
. ~48!

Note that]H0 /] J̃5v( J̃). Separating the perturbed quan
ties into constant̂•& and fluctuating$•% portions, the assump
tion that the fluctuations are higher order requires that
chooseS1 to cancel the fluctuations to this order, whic
gives

]S1

]s
1v

]S1

]ũ
52$H1%. ~49!

When we Fourier expandS1 andH1 in the timelike vari-
ables, this gives forS1

S15 (
~ l ,m!Þ~0,0!

S1
l ,m5( i

H1
l ,m~ J̃!

lv~ J̃!1mv2

exp$ i ~ l ũ1mv2s!%,

~50!

where the individualH1
I ,m components are defined by
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2H1
0,615

1

2

J

v
2

2

10

J2

v2 ,

2H1
2,6152

1

4

J

v
1

3

4

J2

v2 , ~51!

2H1
4,6152

3

32

J2

v2 .

Since the perturbation inH has a vanishing average, there
no constantH1

0,0 term, and the perturbed frequency rema
unchanged to this, or any, order. In addition, Eqs.~50! and
~51! show clearly the resonances atv2 /v562,4 discussed
in Sec. III A 2.

The new invariantJ̃ is given by the transformations in Eq
~47!,

J̃~J,u,s!5J1eJ15J2e]sS15J2e( i lS1
l ,m , ~52!

andJ1 is found to be

J152H1
2,1S exp$ i ~2ũ1v2s!%

2v1v2
1

exp@ i ~22ũ2v2s!#

22v2v2

1
exp$ i ~2ũ2v2s!%

2v2v2
1

exp$ i ~22ũ1v2a!%

22v1v2
D

14H1
4,1S exp$ i ~4ũ1v2s!%

4v1v2
1

exp$ i ~24ũ2v2s!%

24v2v2

1
exp$ i ~4ũ2v2s!%

4v2v2
1

exp$ i ~24ũ1v2s!%

24v1v2
D . ~53!

In Eq. ~53! we may approximateũ by the unperturbed angl

orbit, ũ.u5vs1u0 , and the error will appear only inJ2 .
The expression forũ correct to first order may be obtaine
from the transformations in Eq.~47! and the expression fo
S1 in Eq. ~50!, but this is less important for our purpose
here. We define the ratio of the frequencies of then52
mode and the depressed transverse oscillation frequenc
be a5v2 /v. Expressing the exponentials in terms of trig
nometric functions, Eq.~53! reduces to

J152H1
2,1S 2

v~21a!
sin@~21a!vs#1

2

v~22a!

3sin@~22a!vs# D14H1
4,1S 2

v~41a!

3sin@~41a!vs#1
2

v~42a!
sin@~42a!vs# D .

~54!

With appropriate phase adjustments to account for ini

conditions, the new invariantJ̃(J,s) in Eq. ~52! is numeri-
s

to

l

cally verified to be conserved to within a few percent. Th
small fluctuating error can be accounted for in higher orde

The perturbed orbit in the physical coordinates (x̄,p̄) is

given from Eq.~44! by x̄(s)5A2J̃(s)/v sinũ(s). By assum-

ing that J̃(s) and sinũ(s) can be maximized independently

the maximum value ofJ̃(s), which we denote byJ̃* , thus
places an absolute upper bound on the trajectory excurs
The largest radial excursionx̄* by this estimate is

x̄* 5A2J̃*

v
. ~55!

Here J̃* 5J1eJ1* from Eq. ~52!, whereJ1* is the maximum
of Eq. ~54!. If the ratio of frequenciesa is irrational, thenJ1
in Eq. ~54! eventually passes arbitrarily close to the limitin
value

J1* 52H1
2,1S 22

v~21a!
1

2

v~22a! D14H1
4,1S 22

v~41a!

1
2

v~42a! D . ~56!

Equations~55! and ~56! constitute a simple estimate o
the maximum interior radial excursion of test ions wh
launched with different initial actions, and hence differe
initial radii, consistent with Eq.~44!. In practice, the compli-

cated interdependence ofJ̃ and ū on the unperturbed action
and time~J, s! makes Eq.~55! an overestimate, although Eq
~56! is numerically found to be very accurate. Small nume
cal coefficients to make the theory more accurate will
discussed in Sec. IV. Other complications are considere
Appendix A.

The estimation in Eq.~55! of the maximum excursion of a
test ion in a beam perturbed with collective modes provid
a simple way to make a guess at the time scale for a
particle to move to the orbit farthest from its equilibriu
trajectory. It was assumed in simplifying Eq.~54! to obtain
Eq. ~56! that the terms with frequencies (21a)v,(2
2a)v,... would eventually constructively interfere.~Recall
that a is the ratio of the collective mode frequency to th
depressed particle transverse frequency.! The time scale for a
particle to maximize its energy gain, and possibly move
of the beam, can be estimated by judiciously choosing
rational numberm/n near (21a)/(22a). The time scale is
then on the order ofmT2 , whereT252p/(22a)v. This
provides a fairly accurate estimate for particles inside
beam, providedm andn are selected without demanding th
(21a)/(22a) matchm/n too precisely.

We now apply the estimate of maximum trajectory exc
sions, Eq.~55!, to calculating which particles near the edg
of the beam will gain enough energy to leave the beam c
at some point in their trajectory. The most important para
eter in this investigation ise5d2(v0

22v2), the strength of
the n52 collective mode. The objective is to find the radi
value x̄S at which a particle, launched with initial energ
equivalent to an unperturbed maximum radiusx̃0 , gains
enough energy to just reach the beam edge.@Launching par-
ticles with zero initial radial velocity, which we assume
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the case, makes the initial radial valuex̄0 equal to the maxi-
mum unperturbed value, and impliesJ51/2v x̄2, from Eq.
~44!.# We call x̄S thestripping radius. That is, the maximum
excursionx̄ * is a function ofx̄0 , and x̄05 x̄S is defined by

x̄* ~ x̄S!51, ~57!

or equivalently,x* (xS)5R0 . Particles with maximum un-
perturbed radiusx̄0. x̄S are able to sample the region ext
rior to the beam—at which point the Hamiltonian in Eq.~37!
becomes invalid—even thoughx̄0,1, and thus have thei
motion partially described by Eq.~26!, valid for x̄.1. Once
sampling the highly nonlinear exterior region, the partic
have the potential for large energy gains. These energy g
are explored in Sec. IV. Particles with smaller energies w
nonresonantly gain energy and then give it up.

To find this minimum radius for expulsion, Eq.~57! is

substituted in Eq.~55!, where we evaluateJ̃* in Eq. ~56! at
x̃S using,J→1/2v x̄S

2. The result of some simple algebra i

x̄s
25

2~11ed2!6@~11ed2!212ed1v#1/2

evd1
. ~58!

The constantsd1 and d2 in Eq. ~58! depend only on the
depressed transverse frequency and then52 mode fre-

FIG. 5. Plot ofx̄S as a function ofG ~in %! for n̄251/4.
er
tiv

t

st
us
pr
f
e

s
ins
ll

quency, which in turn depend only onn̄, and are defined by
d15d3(21a23/4a3) and d25d3v(216a1a3), where
d3

215v3(64220a21a4), anda5v2 /v. Equation~58! by
itself is not sufficiently accurate, but with the small nume
cal adjustments discussed in Sec. IV A, it gives, within a f
percent accuracy over a wide range of parameters, the ra
extent of the region near the beam edge from which partic
will be ejected from the beam. Equation~58! can be con-
verted from being a function of the small parametere to a
function ofd2

25G, the ratio of the rms electrostatic energi
in the mode and in the beam core, usinge5d2(v0

22v2).
Figure 5 shows a plot ofx̄S as a function ofd2

2, calculated
from Eq. ~58! without numerical adjustments. The range
particles which sample the beam exterior is of course z
with vanishing mode strength, and constitutes approxima
20% of the beam transverse cross section whenG50.05 ~so
that the energy in the perturbative mode is about 5% of
energy in the beam equilibrium!.

IV. NUMERICAL RESULTS

A. Numerical correction factors for ejection radius estimate

In order to make Eq.~58! more useful, we insert the sma
~compared to unity! factors$l1 ,l2 ,l3% according to

FIG. 6. Comparison of adjusted analytical prediction~solid line!
and numerical solutions~dotted line! of the minimum radius for
expulsion. Plot ofx̄S versusG ~in %!.
x̄S
25

2@11e~11l1!d2#6$@11e~11l2!d2#212e~11l3!d1v%1/2

evd1
. ~59!
tin-
d
s
ds

e

the

in
To ensure that the analytical prediction retains the prop
that no particles are expelled when there is no collec
mode, we require that the expression forx̄S

2 approaches unity
ase vanishes. We expand for smalle and set the coefficien
independent ofe equal to unity: this implies thatl252l1

and l354/3l1 . When the coefficients$l i% are small com-
pared to unity, Eq.~59! is a small adjustment to Eq.~58!.

A typical plot comparing numerical solutions of the te
equations for the unperturbed initial radius of particles j
excited to the beam edge and the analytical-numerical
diction, for l1.0.2, is given in Fig. 6. The overall rate o
growth of the range of expulsion is captured by Fig. 6, ev
if the details~linear initial growth! are not.
ty
e

t
e-

n

B. Comparison of nÄ1 mode and envelope mismatch

Test ion behavior under the influence of ann51 collec-
tive mode and a linearized envelope mismatch are dis
guished in practice solely by the definitions of ‘‘inside’’ an
‘‘outside’’ the beam. Forn51, inside the beam correspond
to $x:x,R0%. For a mismatch, inside the beam correspon
to $x:x,R0(11de cosves)%, or, more accurately,$x:x
,R(s)%, whereR(s) is the exact solution to the envelop
equation Eq.~4!. ~In addition, the mismatch frequencyve
depends on the amplitude for large mismatches, while
n51 frequencyv1 does not.!

Since, as mentioned in Sec. III A, the beam boundary
phase space is an invariant torus for the~fully nonlinear!
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mismatch, whereas it is not for then51 mode, the behavio
of test ions can differ dramatically in the two cases. As
indication of this, Fig. 7 shows that even for very largemis-
matchesof the beam edge, particles initially confined insi
the beam energy surface remain confined for all time.@This
is only true using the fully nonlinear envelope equation E
~4! to determine the evolution ofR(s) in the test ion equa-
tion of motion Eq.~24!. See Appendix B.#

For then51 collective mode, however, interior particles
can easily escape the beam. Figure 8 shows the maxim
excursion as a function of mode amplitude of a test part
launched atx̄050.95. The particle is expelled from the bea
interior at low mode amplitudes, and can gain substan
energy at higher amplitudes.

C. Maximum excursion

In addition to having worse confinement properties,
collective modes facilitate energy gain by halo particles
ready outside the beam much more than the envelope
match, linearized or not. Particles that start outside of a be
with an envelope ripple gain very little energy@11# due to
densely packed KAM surfaces in the region of phase sp
exterior to the beam. This is true, with full nonlinear mi
match effects, even for very large mismatches, measure
the envelope mismatch parameter, the ratio of maxim
beam radius to rms radius,De . ~For small mismatches,De
.1/2de .) The collective modes, however, are very cond
cive to energy gain due to KAM curve breakup in the regi
exterior to the beam’s phase space. In one-dimensional
autonamous dynamical systems, a phase space spa
curve~KAM curve! forms a boundary to motion and energ

FIG. 7. Indefinitely confined test ion trajectory~light line! inside
a beam~dark line! launched at four times the rms-matched val
Rrms. The beam waist is approximately 0.15Rrms.

FIG. 8. Plot of the maximum excursion of a test particle a
function of mode energyG ~in %!. The test ion was launched atx̄

50.95. The dashed line is the beam edge atR̄51.
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inggain, and corresponds to an integral of the motion. As
rameters are varied, these curves can come into and go o
existence, leading to dramatically different trajectory beh
ior. If a KAM curve is destroyed, a particle trajectory ca
stochastically explore a large region of phase space, co
sponding gaining more energy and larger maximum exc
sion. Figure 9 shows the phase space structure for a s
envelope mismatch and ann51 mode with an equal amoun
of electrostatic energy. The limitations to energy gain outs
the fully nonlinear mismatched beam are evident from t
Poincare´ plot, and the lack of limitations for then51 mode,
are contrasted in Fig. 10. For the former, a KAM cur
clearly constrains a particle with initial radiusx̄051.1 to
negligible energy gain for very large mismatch parame
De.1.3. For the latter, the maximum excursion of test io
increases rapidly with mode amplitude, particularly as KA
surfaces are destabilized.

a

FIG. 9. Phase space structures for two differing perturbatio
~a! mismatched beam with no other perturbations, and~b! n51
collective mode. Both perturbations have rms electrostatic ener
which are 5% of the beam core energy.
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Particles whose energy corresponds to a maximum un
turbed trajectory, which we denotex̄0 , betweenx̄D and 1,
will be ejected by the collective modes from the beam
some point, with the possibility of large energy gains.
general, ejected particles either~i! experience negligible en
ergy gains, or~ii ! obtain a well-defined maximum excursio
X̄1.1.5. This behavior is a function of space-charge dep
sion n̄, rms field energy in thenth mode relative to rms
electrostatic energy in the beam coreG[En /E0 , and the
ejected particle’s unperturbed maximum radiusx̄0 .

For mode energies less than a certain critical ene
G1( n̄,x̄0), particles travel no further than a few percent ofR0
outside of the beam; for energies greater thanG1 , particles
consistently travel as far out asX̄1.1.5 ~see Fig. 11!. The
value of G1 decreases as the beam becomes more inte
ranging from less than 2% atn̄251/5 to 15% atn̄251/2.
~See Fig. 12.! In addition, particles withx̄0 further from the
beam edge have higher critical energies, and of course
ticles with x̄0, x̄D never leave the beam. The value ofX̄1
gradually increases withG, and depends weakly onn̄. Since

FIG. 11. Plot of x̄max versusG ~in %! for n̄251/3 with x̄0

50.99(d) and x̄050.95(n).

FIG. 10. Maximum excursion of a test ion versus relative r
energy for two different perturbations withn̄251/3. The two cases
correspond to~a! mismatched envelope~the jump corresponds to
large mismatch parameter ofR0.2.3Rrms), and~b! n51 collective
mode.
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X̄1 does not depend onx̄0 , this is the largest radius an
particle initially in the beam can escape to, and functions
a KAM curve, giving an indication of the phase space stru
ture in the halo region.

Finally, for intense beams with sufficiently large amp
tude modes, this phase-space spanning curve can be de
lized and broken into islands. Above a critical energyG2 ,
particles can explore out toX̄2.2 ~see Fig. 13!. It is plau-
sible that, for extremely intense beams, larger collect
mode amplitudes would make accessible even greater
gions of phase space.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a method of halo forma
based on collective mode excitations, providing possible p
cesses both for expelling particles from the beam core an
means of accelerating particles once they are able to sam
the exterior region.

Collective modes using the fluid model of Lund an
Davidson@15# allow the derivation of test ion equations o
motion in the beam interior and exterior regions. The beh
ior of particles which remain interior to the beam can
analyzed theoretically, and we have calculated perturbed
bits for particles subject ton51 and 2 mode perturbations
This provides estimates regarding the range of initial con
tions for which particles will be expelled from the beam
Resonances for meridional particles are found to be un
portant, while a class of particles with nonzero angular m
mentum are found to participate in resonant behavior.

Once expelled from the beam, numerical methods are
quired, which indicate that KAM curves confine particle
within 1.5 times the beam radius for moderately low mo
amplitudes, but are successively destabilized for higher
plitudes.

FIG. 12. Plot of first critical energyG1 as a function of space
charge factorn̄ with x̄050.95.

FIG. 13. Plot ofx̄max versusG ~in %! for n̄251/5.
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An issue which remains to be explored is the time sc
over which particles are ejected from the beam and g
significant energy. While collective modes have the poten
to affect large classes of particles, if the energy gain occ
slowly compared to other expulsive processes, or if it occ
slowly enough to be easily remedied by collimation, colle
tive modes may not be a serious concern.

It appears difficult to estimate the time scale for expuls
analytically. While the discussion in Sec. III B of the a
proximate time to maximize a test ion’s energy gain provid
a useful measure for the expulsion of test particles inside
beam, particle acceleration to high energies onceoutsidethe
beam is also an important issue. The acceleration of such
particles can only be estimated numerically.

In addition, the sensitivity of the particle dynamics to t
various assumptions made in the model is a subject for fu
study. While space-charge dominated beams are nearly
form in density out to the beam radiusR, after which the
beam density falls abruptly to zero, a small region within
few Debye lengths at the beam edge has a highly nonunif
density, and hence nonlinear fields. Several authors@9# have
noted the effects of including the abrupt falloff at the bea
edge. Initial numerical simulations which replace the sh
beam edge with a falloff over a short but finite distanc
assuming the same form for the collective modes, indic
that the effect is not significant on the main features of p
ticle behavior found in Poincare´ plots. Another important
assumption in the model is the smooth-focusing approxim
tion: although the functional forms for finite bunch collectiv
modes have been derived@21#, it is uncertain what affect
using these more realistic periodic-focusing models wo
have on the present results. Recent numerical work
Glucksternet al. @22# indicates that three-dimensional bun
dynamics play an important role in halo formation.
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APPENDIX A: COMPLICATIONS IN THE ANALYTICAL
ESTIMATE

Equations~55! and~56! form an analytical estimate of th
radial extent of the region from which particles will b
ejected from the beam. It is unsatisfactory for several r

sons. Equation~55! is based upon the assumption thatJ̃(s)
and sinũ(s) can be independently maximized, but this is im
possible because of the Hamiltonian constraint of area p
ervation. The new action and angle generated by the n
identity transformations in Eq.~47! are individually quite
accurate and are separately easy to maximize. It is diffi
using elementary techniques, however, to determine
maximum excursion in the original radial variable,x̄(s)

5A2J̄(s)/v sinũ(s). This is due to the fact thatJ̄ and ū
depend in a complicated way on the timelike coordinates.

The J̃ dependence is given in Eqs.~54! and ~52!. The ũ
dependence can be determined from Eq.~47!, and has a simi-
lar form. The valuex̄(s) then takes the schematic formx̄
5 f (s)sing(s) where f (s) andg(s) each have trigonometric
e
in
l

rs
rs
-

n

s
e

ail

re
ni-

m

p
,
te
r-

-

d
y

y

-

s-
r-

lt
e

terms with 2n frequencies for thenth collective model. It is
difficult to reliably maximize this expression, even usin
Bessel-like expansions of the sing(s) term. Indeed, the maxi-
mum excursion behaves in a sufficiently complicated w
that it is unlikely that any simple analytical approximatio
will capture all relevant behavior. This difficulty in maximiz
ing the expressions is therefore handled by introducing
numerical coefficients in Sec. IV A.

In addition, in the method used here, the fact that partic
approach close to the only nonzero node for then52 collec-
tive mode,r̄2

15A2/3, but no further, is contained in this in

terdependence. That is, the ‘‘interference’’ betweenJ̃* (s)
andũ(s) not only makes Eq.~55! an overestimate, but make
the maximum radial excursion as a function of initial ener
behave in a complicated fashion near the nodes. Away fr
the node, at the beam edge, the numerical factors can acc
for this overestimate.

Another complication is the violation of the assumptio
that the the mode oscillation is fast compared to the tra
verse trajectory oscillation. Although this holds over the e
tire oscillation, the mode may not oscillate quickly enou
for the force to average to zero over a particular section
the trajectory. In particular, the test ion, between passing
node r̄2

25A2/3 and reaching its maximum excursion, m
experience a force of the same sign. The Hamilton
method above would require interference from higher or
harmonics to accurately approximate this force which
pears quasisteady on a short time scale. The result is
particle trajectories in a sufficiently slow collective mod
relative to the transverse oscillation, have their energy g
temporarily underestimated, and can move out of the be
more easily than analytically predicted. To estimate wh
this happens, we compare the timeTr between a typical
unperturbed test ion’s passing the noder̄2

2 and reaching its
maximum unperturbed excursion halfway between the n
and the beam edge, and a collective mode half-period 1/2T2 .
We find that a test ion will experience a force averaging
zero whenn̄!0.25. Numerical studies confirm that, und
the opposite conditionn̄.0.25, moderate amplitude mode
can expel particles from the beam almost immediately o
they are able to pass the node.

APPENDIX B: USE OF THE LINEARIZED ENVELOPE
EQUATION

The statement that interior particles are confined for
time in an envelope mismatch is only true using the fu
nonlinear envelope equation Eq.~4! in the test ion equation
of motion Eq. ~24!. Since the expansionR(s)5R0(1
11/2de cosve s) is near the beam edge for small initial di
turbances from the matched radius, this expansion is ‘
most’’ an energy surface. Where it is a valid expansion, p
ticles may travel a small distance out of the beam, but do
gain a significant amount of energy. If the linearized expr
sion for the beam envelope is used for largede , particles can
experience very large gains.~The exact envelope confine
particles for any size mismatch, as is evident from Fig.!
Thus, predictably, the linear expansion behaves ‘‘nicely’’ f
small perturbations, but becomes unphysical for large m
matches even though solutions to the full nonlinear equati
continue to be well behaved.
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A similar statement might conceivably be made about
linearized collective modes used here, namely, that the
eterious effects are due to using linearized modes in a s
tion where the full nonlinear perturbative structure wou
remain well behaved. However, since the appropriate m
s

ig
.

e
l-
a-

a-

sure of smallness is that the energy in the perturbative mo
be small compared to the field energy of the unperturb
beam, it is possible to introduce perturbations on realis
intense beam equilibria which have significant effects
particle behavior despite their small amplitude.
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