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This paper examines analytically and numerically the effects of self-consistent collective oscillations excited
in a high-intensity charged particle beam on the motion of a test particle in the beam core. Even under ideal
conditions, assuming a constant transverse focusing fsmeoth focusing approximatigrand perturbations
about a uniform-density, constant radius beam, it is found that collective mode excitations, in combination with
the applied focusing force and the equilibrium test fields, can eject particles from the beam core to large radii.
Test particle orbits are calculated for collective oscillations withl and 2 radial mode structure, and an
estimate is obtained for the range of initial conditions for which particles will be expelled from the beam
interior. Resonances for meridional particles are found to be unimportant, while a class of particles with
nonzero angular momentum are found to participate in resonant behavior. Once expelled from the beam,
numerical solutions of the orbit equations indicate that Kolmogorov-Arnold-Moser curves, phase space span-
ning integrals of motion, confine particles within 1.5 times the beam radius for moderately low mode ampli-
tudes, but are successively destabilized for higher amplitudes.

PACS numbdis): 29.27-a

I. INTRODUCTION It relies, however, on several important assumptions. The
distinction between halo and core particles must be predomi-
It is increasingly important to develop improved theoret-nantly preserved over time, so that halo particles should stay
ical models of halo production and control for charged parfeémoved from the beam core in phase sp@;6], and not
ticle beam propagation in high-intensity accelerators andycle in and out of the beafl0]. Methods of particle ex-
transport System&yz:l, with app"cations to spa”ation neu- pUISion not eXp|ICIt|y included in the model must function
tron sources, heavy ion fusion, nuclear waste treatment, argHfficiently slowly that collimation is effective and does not
tritium production. Halo formation mechanisms, such asUnacceptably diminish the beam brightness.

beam mismatch and nonlinearities associated with nonuni- Many recent numerical simulations have studied the ef-
‘ects of mismatch oscillations. Pakter and CHéd] have

form space-charge forces, have been explored both analyl? . : ) . .
: ound with extensive test particle simulations that
cally and numerically.3,4] Kolmogorov-Arnold MoserKAM) surfaces persist outside
The core-particle model of Gluckstef] was an early, oo iohed periodically focused Kapchinskij-Viadimirski

suctczsiful attfzmg)_t totgestc):nbe thg sttructure of thf Ea(ljo 9€¥eams for significant envelope oscillation amplitudes. Oka-
erated by perturbing the beam about an rms-matched equg, i, 5nq Ikegami 9] briefly discuss the possibility of a

librium, Ie.adin.g. to an envelope mismatch o-scillation. Thisstochastic instability in the core tail—the edge of the beam in
method simplified the dynamics by averaging over term§)nage space—caused by static field nonlinearities i

away from a 2:1 parametric resonance, creating an integral Qfniform-focusing channels. For such a time-independent
the motion. This integral was used to describe the particlease, however, motion inside the beam is regular due to the
behavior, and the predictions of halo structure closely repxistence of a first integral.
sembled numerical simulations. This averaging procedure, Finally, the work of Qian and co-workefd2] and Fink,
however, also eliminated chaotic and diffusive elements oChen, and Marablgl13] showed that nonlinear space-charge
the trajectories. In addition, since initial conditions had to beforces in periodically focused channels are able to expel par-
chosen placing particles outside the beam surface, the modetles and excite them to significant radii. The static charge
did not describe the self-consistent expulsion of particleglensity profiles assumed in the model, however, are not self-
from the beam core. consistent, since they are not solutions of the Vlasov-Poisson
The analysis of envelope instabilities by Gluckstgéh  equations. Although this research built on expectations that
described regions in parameter space in which the amplitudéistributions more complicated than the Kapchinskij-
of the breathing mode of the beam core would grow in time Vladimirskij distribution[ 14] would lead to a lack of particle
This could lead to particles being expelled from the beamgconfinement, it was not clear how rigorous the conclusions
but it required a gross instability which may not be present incould be made.
practical applications or may saturate at a low level. It did Despite the significant advances noted above, a funda-
not attempt to explain how quasisteady conditions could remental understanding of halo production is incomplete. In
sult in particles leaving the beam. this paper, we consider a mechanism for the production of
The idea of collimatior7] is highly relevant to attempts halo particles. Namely, we consider the effects of self-
to keep expelled particles away from the machine structureconsistent collective oscillations excited in a high-intensity
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ion beam on the motion of a test particle in the beam core. Ze
Even under ideal conditions, assuming a constant transverse W(r,s)= impe? o(r,s). 2
b b

focusing force(smooth focusing approximati@pnand pertur-
bations about a uniform-density, constant-radius beam, it ig, Eq. (2), r=(x>+y?)¥2 is the radial distance from the
found that collective mode excitations, in combination withpaom axis, and the space-charge potentiél,s) is deter-
the applied focusing force and the equilibrium self fields, cangineq self-consistently in terms of the density profile
eject particles from the beam core to large radii. ny(r,s) from Poisson’s equationy ~L(a/dr)[rdglar]=

In Sec. Il we present the assumptions which underlie the_s > A perfectly conducting cvlindrical wall is lo-
theoretical model for the beam equilibrium and perturbative 7eey- A4 P y g cy

: : X _cated at radiug =r,,, where the boundary conditions is
modes. This allows us to develop test particle equations in, . _ _
¢(r=r,,,s)=const.

Sec. IIC, which are then analyzed theoretically in Sec. lll,” "\\/a assume a kineticL4] or warm-fluid[15] Kapchinksij-

it?crlludi_ng fresonatn(ISec.. It“ /_I\I) a_mdthnorg)resonla:(ls_ec. Illl B Vladimirskij beam equilibrium, and for this case the equilib-
enhavior for particles initially in the béam Interior. For ex- ; density profileng(r,s) is uniform in the beam interior
tended dynamics of particles traveling both in the interior ith

and exterior regions, we discuss numerical results in Sec. Vs

Improvements to the analytical estimates are made in Sec. N,
IVB, and the maximum excursion of particles out of the 0 vl 0<r<R(s);
beam is determined in Sec. IV C. N(r,s)=41 7 )

0, R(s)<r=r,,.

Il. THEORETICAL MODEL AND ASSUMPTIONS In Eqg. (3), N, is constant, andR(s) is the solution to the
A. Equilibrium envelope equatiofl6],
We consider an intense nonneutral ion beam with beam d°R K €
radius R propagating in thez direction. The characteristic @“L K~ R? R= R3 4

axial momentum of a beam particle {§mpB,c, whereV,

= Bpc=const is the directed axial velocity. Hemm is the  wherex= w?/B3c? is the transverse focusing coefficieais
ion rest massc is the speed of light in vacuoy,=(1  the unnormalized transverse emittance, &ni$ the dimen-
— B2)~Y2is the relativistic mass factor, and the ion charge issionless self-field perveance defined [ly]

denoted by+Ze. In the present analysis, the applied trans-

verse focusing force is modeled in the smooth focusing ap- . 2Np(Ze)? ®)
proximation by  yam(Bye)?’
Ffoc(X)=—7bmwf2(Xéx+yéy), (1) For our purposes here, we further assume a matched,

constant-radius beam equilibrium witR(s)=R,, a con-
stant. The only explicit time dependence in the problem is
therefore due to the eigenmode excitations, to be discussed
below in Sec. IIB. Using Eq(4), Ry is determined self-
onsistently in terms ok, K, and €? from Eq. (4)

where w; is a constant focusing frequency with units of in-
verse time. Herex is the vector positionx=(x,y), related
to the scalar radial distance from the beam axjsby r
= (x2+y?)Y2 The transverse displacement from the beant

axis is (x,y). The effects of self-electric and self-magnetic K &2
fields on the particle dynamics are retained in a self- K__z) Ry=—3. (6)
consistent manner, consistent with the paraxial approxima- Ro Ro

tion, and the assumption that Budker's parametey, is For the constant-radius, uniform-density beam consistent

much less than the relativistic mass factomg : o . o
=N,(Ze)?’/mcZ<1y,. HereN, is the number of beam ions with Egs.(3) and(6), it is readily shown that the equilibrium

o . self-field potentialiy(r) is parabolic in the beam interior,
per unit axial length, related to the number density of beam L : : .
! ; . and logarithmic outside. We obtain from E@) and Pois-
ions ny(x,y,t), the number of particles per unit volume, by son’s equation

Np,=/dxdyn,.
The assumptions of constant axial beam velotfgyand 1 .
paraxiality allow us to convert from units of time to axial - EKTZ, Os=r<1,
length s throughs= B,ct. The wave number equivalent to Yo= )
the transverse focusing frequency, the transverse focusing 1 N
- . : . : : —5K(1+2InT), 1<r=r,.
coefficientx, is defined byyx= w¢/B,c, which has units of 2

inverse length. Beam quantities such imgx,y,t) will be

expressed as,(X,Y,s) through this conversion, and deriva- Here, barred coordinates have been normalized by the con-
tives (-)’ will refer to spatial derivativesd/ds(-). Since stant beam radiuR,, so thatr=r/R, andr,=r,/R,. The
they are equivalent, we will refer to frequency and waveboundary conditions sef, at the wall equal to the constant
number interchangeably. We further assume axisymmetrigalue ,,= — (K/2) [1+2 InT,].

unbunched beam propagatios/§6=0=d/dz), and intro- In the beam interior, the external for€g,. harmonically
duce the normalized dimensionless self-field potentigle-  focuses the particle motion with undepressed wave number
fined by wo= k, while the self-field potentiafs, harmonically defo-
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TABLE I. Normalized eigenmode potentiads, and eigenfrequencias? for the infinite set of collective
modes described in Sec. |1 B. The frequengyis normalized to the undepressed tueg= w, /vy .

Mode number Normalized eigenmode potentigl Eigenfrequencyw?
1 1-T2 2+272
2 1-4r2+3r* 2+ 142
3 1-9r2+18*-10r® 2+ 34,2
4 1-16r2+60r*—80r®+35r° 2+62,2
5 1- 252+ 150r*— 350r8+ 350r — 1267 1° 2+98,2
n 2+2v%(2n%—1)

%[Pn,1(1—2T2)+ Pn(1-2r9)]

cuses with wave numbeyK/R3. The “depressed” oscilla-
tion wave numbew (dimensionless uniigs defined in terms
of the transverse focusing coefficiert perveanceK, and

Sia(T%) = %[an(l— 2r3)+Py(1-2r3)] (12

equilibrium beam radiu&, by where{A,} are constant amplitudes. The normal-mode oscil-
lation wave numbers{w,} are defined by w?=«[2
—_ . K ® +2v2(2n2—1)] in Ref. [15]. For completeness, the func-
N KR%' tional forms of the eigenmodes and the dispersion relations
for low values ofn are summarized in Table I.
The “depressed” oscillation wave number (dimensional A remarkable feature of the warm-fluid analysis is that the
units) is given by normal modes{w,} are in excellent agreement with the
(stable high-frequency oscillations calculated by Gluckstern
K K [17] using a kinetic model based on the Vlasov-Poisson
w’=K1P=Kk— —= wg— —. (9) equations. This conclusion is valid over a wide range of val-

ues of the self-field perveanée[15].
In Egs.(11) and(12), the dimensionless amplitudés,,}
B. Self-consistent perturbations are required to be small for the linearization to be valid. We
o ) ) choose to quantify this smallness by comparing the bulk rms
A key focus of the present analysis is to investigate the,acirostatic energy in theth collective mode¢&,, to that in

motion of a test ion in the combined fields of the applied,o oquilibri ; i

O g D quilibrium electrostatic energy within the beafj.
focusing field in Eq(1), the equilibrium self-field in Eq(7),  Eectrostatic energy is proportional to the square of the
and the perturbed self-field associated with self-consistent .| self-electric fieldg=|E|2/8m=|V ¢|%/8m. This is inte-

collective oscillations excited in the beam. grated over time and volume to obtain the bulk rms value.

We express the total self-field potential as We obtain
P(r,8)= iho(r) + Sy(r,9), (10 1T Rol 4 2
8é :—f ”dtzwf — o(r,0)| rdr, (13
where (1) is defined in Eq.(7) for the case of a step- " Tolo o |or Pl

function equilibrium density profile considered here. For the
perturbed potentiaby(r,s), we make use of the warm-fluid whereg,(r,t) is the self-field potential of theth mode, and
model developed by Lund and Davidsftb]. This macro- T, is its period. Furthermore, we express the dimensional
scopic model neglects the heat fl§W - Q=0], but follows  expansion coefficient$A,} in Eq. (12) as A,=c,e,6,K,

the self-consistent evolution of the beam density, flow  whereK is the self-field perveance. Here, is defined by
velocity V,,, and pressure tens8y,. For perturbations about

a warm-fluid equilibrium with step-function density profile 1 d

[Eg. (3)], the analysi§15] predicts an infinite class of stable Ch =722 Sn(1?) (14)
oscillations, each with its own eigenfrequency and radial 2=0

eigenfunction. The perturbed potentials are polynomiaFin

in the beam interior(oscillating sinusoidally in timg and
vanish outside the beam, i.e.,

in order to normalize the coefficient of theterm in the
oscillating polynomial to unity. In additiorg, is chosen so
as to make the criterion of smallness—that the mode’s en-
ergy be small compared to the beam’s—take the nondimen-

> SYn(Tcog wps+By), 0=T<1, sional form that some small parametéf, be much smaller
SiS=4 n=1 (1)  than unity, as follows.
0, 1<r=r,,. We find for the harmonic potential generated by the equi-

librium step-function density profile that

Here, {B,} are constant phases. The radial eigenfunction
Sy,(r?) is defined in terms of the Legendre polynomiéa$
the first kind, P,_1(x) andP,(x), by

R4
Eo= azf, (15)
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wherea=(Zewn)? andnl=N, /7R3 is the constant num-
ber density of the flat-top beam. For tme=1 collective
mode, the definition o€, =1/2, and we find that

4
e; Ry
E=dia’ 5

(16)
Comparing Eqs(16) and (15), the condition that; /&y<1
be equivalent tas%2<1 requires thae; = 2. Similarly, for the
n=2 mode,c,=1/8, and&,= 83e,R3/64, and sce,= 16. If
we denote the ratio of mode energy to beam endrgy

= 5ﬁ, the definition ofc, ande, together make the condition

that the rms electrostatic energy in thih collective mode is
small compared to the beam’s field energy reduce to

52<1. (17)

C. Test ion orbit equations

We consider the motion of an individual test ion in the

axisymmetric field configuration described by E¢s) and
(10). Because)/96=0 is assumed, thenormalized canoni-

cal angular momentun®,=P,/y,mB,cR2 is conserved,
ie.,

— d dx
RéP[,:x—y—yd—s = const.

ds (18)
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where use has been madefyf=c,e,6,K, andc, is defined
in Eq. (14) and by the requirement Eq17). Similarly, for
meridional motion inside the beanx{<1) we obtain

d3

dg

KL K < ]
- R_g X= 7 2 5ncnena_75‘//n(ﬂ00$wns+ﬁn)-

RO n=1
(22)

+| Kk

We also recall the relation between the undepressed wave
number, wy=+/x, and the space-charge-depressed wave
number,w,

K K

2_ —
T2 T KT o2,
RO R0

w2= ol (23)
in order to write the left-hand side of E(R2) asX”+ w?X.

For comparison, forﬁ%zo the equation to be solved for
particle motion in the interior of a mismatched beam is

d> K \_
@‘l‘ K—% x=0, (24

where R(s) is obtained by solving Eq(4). On the other

hand, forﬁgi 0, particle motion outside the beam>1),
Eq. (20) reduces to the nonlinear autonomous equation

d?r K \_ P?
RJ’_ K—W r—r_—3=0, (25)

Furthermore, it is readily shown that the equation of motionwhere use has been made of E@9), (7), and(11), and to

for the normalized radial coordinatgs)=r(s)/R, of the
test ion is given by

d2r 2 ay\_ P?

In this equationx= w?/B2c? is the transverse focusing pa-

rameter, andj(r,s) = (1) + Sy(r,s) is defined in Eqs(7)

d’x

a2 + (26)

K \_
K—W x=0

for P2=0 and|X]>1.

Equations(22) and (26), supplemented by the associated
definitions of§y,,, {w,}, etc., constitute the final form of the
test-particle orbit equations to be investigated analytically
and numerically in Secs. Ill and IV.

and (11). Equation(19) is a valid description of the test ion
motion, both inside the beant€ 1) and outside the beam
T>1). Il. THEORY OF THE DYNAMICAL SYSTEMS
Finally, we shall assume, unless otherwise stated, that the |n this section we examine several features of the test ion
analysis is restricted to particle orbits that pass through thenotion analytically, using numerical solutions as verifica-
beam axis X,y) =(0,0), and thus have zero angular momen-tjon.
tum. (We call these particlemeridional) For example, set- There are two ways for a particle which would normally
ting y(s=0)=0=(dy/ds)s—y gives P,=0, and the orbit be confined within the beam to leave the beam interior and
equation forx(s) = x(s)/R, reduces to motion in theplane:  sample the highly nonlinear exterior region. A particle which
would remain in the interior in the unperturbed case—and
Y thus be governed exclusively by the interior dynamics—may
W) n either resonantly gain energy from the perturbation, with the
r=x possibility of large excursions, or nonresonantly absorb and

. L . .. then give back energy.
For test-particle motion including angular momentum inside | the resonantcase, the gain in energy is limited by the

the beam (<1), we obtain by substituting the equilibrium onqency to fall out of resonance, and by the change in dy-
and perturbed self-field potentials namics when the particle finally exits the beam core. How-
ever, the nature of the flat-top density profile in EG)

d>

E-I—

L2
RS

x=0. (20

K

d’r K|_ 5?,_ K < d makes it easy for particles to stay in resonance until they
e rRI"TET R_ggl SnCnen=Otfn(r)COS leave the beam. Since the unperturbed beam generates har-

monic motion for meridional particles in the interior, the

X (w,S+ Bn), (21)  tunes of particles with different energies do not differ, pro-



PRE 61 PRODUCTION OF HALO PARTICLES BY EXCITATION .. .. 5757

vided the particle remains confined. In addition, since the 15
fluid modes have purely oscillating perturbations, they do not 1
cause a higher-order tune shift. Thus, if a fluid mode reso- 0.5
nance is encountered, it will affect all meridional particles in r 0
the beam. _(1'?
In thenonresonantase, while the gain in energy is small, 15
it may be enough to push particles over the “tune edge” at 0 3 10 15 50
the beam radiuR,. If a particle temporarily picks up en- s/S

ergy, but is ejected from the beam core in the process, the

new dynamical system may prevent it from simply giving the  FiG. 1. Test ion trajectorylight line) in a beam(dark line

energy back and executing small oscillations around its Unfaunched at 1.8 times the rms-matched vaRyg,. The test ion was

perturbed orbit. initially just inside the beam edge. The space-charge depression

Although a complete solution to the full problem demandsfactor is»?= 1/3.

that two dynamical regimes—interior and exterior to the

beam—be connected smoothly together, the question of dx .

whether particles which normally would be confined can es- a2 X~ Se( 0§~ )X COSw,S=0. (30

cape at all can be answered by simply noting under what

conditions advancing the particle motion in the interior dy-Taking 5,= 5,, Egs.(28) and(30) are identical. For meridi-

namical system forward causes particles to leave the beamyna| motion outside the beam the orbit equations forrthe
=1 mode and the envelope mismatch mode are also the

A. Resonant behavior same, i.e.,
1. n=1 mode for meridional test ions dzx K
We begin by considering a beam supporting onlyran a2 tle- RZX2 )X:O' (31)
=1 mode. The normalized potential for this mode ig
=A,(1-%?), where the amplitude coefficiedt,=&;. Us- However, it is important to distinguish what constitutes
ing this potential in Eq(21), we find for motion inside the outsidethe beam for the two cases. The fluid modes are
beam, derived for perturbations about a constant radius beam, so

outside the beantorresponds tdx|>1, or [x|>R,. The

dzr K\_ P32 K _ mismatch ripple, however, requiregx|>R(s)=Ry(1
42 +| k— ¥> PR 61r cog w,S+ B1)=0. +1/26, coswes). This distinction has practical consequences.
0 0 We shall neglect resonances for the moment. In both the

(27)

Equation (27) can be further reduced, using the definition resonance is encountered, tori are therefore invariant
w?=wi—K/R3 in Eq. (9), and setting the arbitrary phage : '

equal to zero. In addition, we assume meridional particles; In the case (.)f msmgt_chedbeam W'th no_other collective
=, o ' _ perturbations, if a meridional test particle is launched at the
i.e., P3=0. This gives the equation beam edge with the same radial velocity as the beam
envelope—or with any energy less than this—the equation of
motion predicts that it will remain confined for all time. In
the case of an envelope mismatch, the enveR{® is itself
the projection of an energy levg?] onto thex axis. That is,
This is a Mathieu equatiofL8] of the form the stability of the beam envelope, which itself corresponds
to maximal-radius particle trajectories, guaranteesstabil-
d?y ity and confinemeruf particle orbits under an envelope mis-
ae + (w?+ 8coswst)y=0, (29 match. Therefore, the projected phase space trajectory which
yields the beam radiuR(s) cannot be crossed except by
resonant breaking of tori, and all particles initially within the

dw,/ =2 (principal Mathi beam remain confined in the beam interior. Figure 1 shows
resonanceand w,/w=2 (principal, or Mathieu resonante the motion of a particle with energy slightly below that

P PR 2
In our case, it is seen from Table | thay is given by wf needed to escape the beam core.

=2w§(1+17). For a constant radius beam supportingaflective mode

It is illuminating to compare Eq(28) with the equation  however, the beam eddR is not the projection of an energy
for a small envelope oscillation. Rather than takRg Ry  |evel. The self-field potential caused by the modes do not, in
=const in Eq.(4), we assumeR(s) =Ry(1+1/25.CoSwes).  general, have nodes Bt R,, and so the energy associated
The envelope oscillation frequency for this small-amplitudeyjth the beam edge oscillates in time. Since particles that
mismatch mode is given by =2w§(1+7%), which is the  would normally be inside a mismatched beam might be out-
same as the frequenay, for the n=1 collective mode. If  side a beam supporting ar=1 collective mode, experienc-
we replaceK/RS by K/R?(s) in the orbit equation for(s) in ing the exterior nonlinear forces, there is no guarantee of
the beam interior ¢ 1<x<<1), we obtain Eq(24). Linear- invariant tori. That is, since the equations of motion for a
izing for small . taking 84=0, this equation becomes linearized mismatch and the=1 mode are identicaktabil-

mismatch case and the=1 case, the test particle equation is
a time-modulated harmonic oscillator, and, unless a Mathieu

d*x 2% 2_ vy
FJ”D X— 81 (w§— w?)X CcoSw,5=0. (289

with well-known resonances neass/w=1 (fundamental
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ity of particle orbits inside the beam is also guaranteed by the 8

stability of the envelope, but confinement is not guaranteed,

since particles may sample the exterior region under the in- 7

fluence of ann=1 mode when they would not in a mis-

matched beam. If the particle in Fig. 1 were inside a beam w2 6

supporting ann=1 mode and not a mismatch oscillation w

mode, the particle would in fact escape from tRe const. 5

beam. In practice, particles near the edge escape the beam

and experience significant energy changes. This behavior is 4

treated further in Sec. Il B. 0.2 04 0.6 0.8 1
Returning to examining resonant behavior, we reiterate v

the impossibility of encountering the Mathieu resonances
nearw;=2w. As the test particle trajectories begin to come
into resonance with the Mathieu mode, the resonanc
strength approaches zdrt9]. Heuristically, this can be seen
more 'clefclrly by normahzmg the _depressed frequency tcfs satisfied: we will examine this issue in Sec. || B. We con-
unity in either the mismatch equation or the=1 equation . .

. ) X vert the coefficients in Eq35) to wave numbers, choose the
so that there is only one normalized frequency in the pmbérbitrar hases, to be zero, and consider only meridional
lem. We introduce a new scaled tinse ws. Thus Eq.(28) yp 2 ' y

FIG. 2. Plot of the ratio oh=2 collective mode frequency to
gne depressed transverse particle frequengyw, as a function of
sSpace-charge depression factor

transforms into test ions P2=0), changingT to X. The Hamiltonian
H(X,p,s) describing the motion in Eq35) under these con-
dx 03—’ [wg ditions is given by(for [x]<1)
@+x—51 sz xcos(—ls) =0. (32
1 1 1 3
— _R24 252 2_ 2| Zg2_ —<4 2
Using the fact thats?=72w, and that H=2p+ o dwp—w )(ZX 8 )Cosw S
2 2001752 (37
0] 2wH(l+v9)
02 o522 (33 wherep denotesdx/ds. From this Hamiltonian, it appears
0 that the principal resonances for cubic nonlinearities in para-
we obtain metric equations are ab,/w=*2,=4. This claim will be

verified below in Sec. Il B. Referring to Table I, we find that

Veval _32
dx _  1-v-_ [_ | 2
ﬁ+x—51VTxco S 2+V_—2

Thus, when the time-dependent term in E84) term ap-
proaches cossasv— 1, the mode coefficient proportional to A piot of w,/w is presented in Fig. 2. From this it is clear

—2 ; i T ! .
1-v* approaches zero. The particle trajectories-asl are  that, over the entire range of space-charge depression, the
confirmed numerically to be well behaved. ratio w,/w never approaches the values of 2 or 4.

Hence, we can conclude that there are no important reso- Therefore, fundamental and principal resonances are not

nances for a meridional particle inside a beam supporting agxpected to be important for the=2 collective mode.
n=1 collective mode.

=0. (34 0l 2(1+772)
F:T' (39

3. Higher-order modes
2. n=2 mode for meridional test ions . . .

—s . In fact, the functional relationship between théh mode
Thex® dependence of the=2 mode(see Table)iraises  frequency w, and the depressed transverse frequency
the possibility of a nonlinear parametric resonance. We Willyaies these principal resonances inaccessible for all mode
find that, although resonances would exist if the depressempersn. The Hamiltonian expansions predict resonances
frequency and the second mode eigenfrequency could be Vags, the nth mode atw,/w==+2m for integersm=n. Using

ied independently, they are “inaccessible” due to the func-y,q dispersion relation in Table 1, we obtain

tional relationship between and w,.

The equation of motion for a test particle with general w2 2+272(2n%—1)
i ni N = (2
value of canonical angular momentu®y in a beam support- i -2 =0gn(v9). (39

ing ann=2 collective mode igfor r<1)

Defining n=2n?—1 and denotingu=72, we find for the

dr K\ E?* K[ 34 2 first two derivatives ofy,(u)=2(1+nu)/u
_SZ+ K— —% r—_—3—52—2 r——=r COiw S+ﬁ2)=0. n !
d R§ r R§ 2

35 dgp(u) -2 _ . 2_
39 %ZF(].‘FHU)‘FGH,
Note that the parametric term proportional & vanishes
when, during the test ion’s trajectory, the condition g (u) 4 (40
n J—

T=12/3 (36) duz ~ u¥
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Setting the first derivative equal to zero yields the contradic-
tion 1+ nu=nx, and so the only extrema are on the bound-
ary pointsu=0,1. Since the second derivative is positive in
this region, the minimum occurs at=1, and from Eq(39),

gn(u) evaluated atu=1 is equal to 42. Hence, as before,
when7?—1 and the ratio of mode frequency to depressed
transverse frequency approaches from above the uppermost
resonancey, /o= *2n, the coefficient which multiplies the

mode amplitude, (% v?)/v?, approaches zero.

4, Test ions with nonzero angular momentum

As a simple example for particles with nonzero angular

momentumP ,# 0, we consider perturbations around an in-
terior circular orbit with constant radiug=r./R,. Assum-
ing 6¢=0, the value of angular momentum which is consis-
tent with this unperturbed circular motion is easily found
from Eq. (19) by imposing the conditiorr,=const. This

gives 1
K\ E?, 0.75
(K— Ez)rc—q-=0, (41 .
0 re
0.5
which has the solutio®2=T_ “x 2. s
For a given value 055, the particle motion in the equi- 0 30 60 9 120 150
librium orbit is purely azimuthal with constant radius. (b) s/S

The frequency of motion around this circular orbit d&

= K2 If, however, the ion is perturbed radially slightly FIG..S..Rep.resentative perturbation about.a circular oxhit: .
away from the equilibrium, the trajectory will consist of the oscillations in and out of the reference orbit may resonate with

small radial oscillations aboi=T . (This also holds for a the collective mode,_r;\nd)) cause test ion energy gain. The beam
) i ~ = 0
small perturbation in the azimuthal direction, which is parameters irfb) arev=~0.95 andl'=2.5%.

equivalent to a small change ﬁg and hence in the equi-
librium radius) These small radial deviations oscillate with a
frequency different from the azimuthal motion: we expect
from dynamical considerations that the frequency of smal
radial deviationsw, will be twice the frequency of azimuthal
motion w, and this can be verified by direct calculation. Us-

takes the form 6F"+ w2dF — 8;(w3— w?) (ST +T,)COSw; S

=0, which is again a Mathieu-type equation, now both para-
fnetrically and externally driven. The frequency of the
=1 collective mode is given byﬁ: k(2+2v?),) and there-
fore the ratio of the frequencies is

ing the equilibrium angular momentum found from E41), w2 24972
we linearize Eq.(21) for small perturbationsst about the Gty 43)
orbitr=r.. The linearized equation of motion for the per- W 4v

turbed radiusSr =r —r with no collective modes present is o ) .

oscillations about this circular orbit is found to be nancg for 1= 1. In addition, there is no nonlinear frequency
shift in the radial oscillation about the equilibrium orbit.
w§:4,52, (42)  Therefore, forr?=1, perturbed radial oscillations may grow

in amplitude by being in phase with the collective mode.

The perturbed radial frequenay, is indeed twice the equi- That is, the particle motion may be outside the equilibrium
librium azimuthal frequency, and is furthermore independentircular orbitt, when the quadratioa=1 mode potential is
of the equilibrium radiug ;. If these small radial orbit de- decreasing with radius, and inside the equilibrium circle one
viations resonate with the collective mode, oscillating withhalf period later when the collective mode is increasing with
independent eigenfrequenay, , the particle will experience radius. Two effects will limit this energy gain. First, when
an energy change. The radial deviations, for example, mathe particle orbit grows sufficiently large, it will encounter
cause the perturbed particle trajectory to be outside the equike finite beam radius, and sample the nonlinear fields in the
librium circle r, when the electrostatic collective mode per- exterior of the beam, leading to rapid frequency detuning and
turbation is decreasing towards the edge of the beam, arglibsequent energy loss. Second, as mentioned above, the
inside the equilibrium circle when the reverse occi®&ee collective mode is multipled by a coefficient proportional to
Fig. 3) 1—72. Since the fundamental resonaneg= w, occurs at

We now consider in particular the linearization of Eq.»?=1, energy gain must occur near resonance, but before the
(27), the equation of motion in a beam supportingran 1 coefficient cuts off the mode. Therefore, the small detuning
collective mode, for small perturbation¥ away from an away from resonance necessitated by the coefficienb
equilibrium circler, such thatér=r—r.. The equation will lead to eventual stability of the particle orbit. Figure 3
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. S-S S into action-angle form to prepare the Hamiltonian for ca-
. e .0 . nonical perturbation theory. The actiah invariant in the
0.75 ' Lt unperturbed case, and the angldinearly advancing in the
T s y . -, " unperturbed case, are related to the original coordinates by
R X=(2J/w)¥sin e,
0.25 s . .,
: (44)
P PP p=(2Jw)?cos6,
0 2 4 6 8 10
n

and the equilibrium trajectories iU, 6) space are straight
FIG. 4. Radial locatiorp’,(X) of nodes as a function of mode lIn€s with

numbern.
J=const,
illustrates a test ion trajectory being expelled from deep (49
within the beam near the fundamental resonance. The beam 0=ws+ 6.
is tenuous, with space-charge depression factor vof
~0.95. The canonically transformed Hamiltonian}H(J,#6,s)
=H(X,p,s), with e=6,(w3— w?), is given by
B. Nonresonant behavior 3 37312
We now consider the effects of nonresonant energy H=wl—¢€ (Z) sir? 6_§(Z> sin® 6|cosw,s. (46)

changes on the test particle dynamics. Since the particle can
only gain a limited amount of energy before giving it back, , , . .
nonresonant trajectory changes, while they may have an eHsmg standard pertuibatlon theof0], we exprejssH'
fect on beam emittance, will dramatically affect the single-="Ho* €H; and letS=J0+ €S, generate the near-identity
particle dynamics only if the mode causes the particle tdransformations

sample both the beam interior and the exterior region when it

normally would not, and thus is only of interest for particles 3= (7_32~+ 6(9_31

with energy “close” to the escape energy from the beam a6 a0’

core. 47
We treat explicitly then=2 collective mode: then=1 . 6S S,

mode can be included as a special case. From numerical test 0= —=0+e—.

ion studies, them=1 andn=2 modes appear to be the most aJ 7N

likely to expel significant numbers of particles. In the equa-

tion describing the test ion trajectory in the beam interior,ye further assume a canonical transformati(fm(j )

Eq. (21), the polynomial (/dr)6y,(r) generally hasn  _43 g) and expand about the small changédné). This
nodes{py,....ph} in the interior. At these nodes, the value of gives

the perturbed radial self-field always vanishes, as alluded to
in Eq. (36). (See Fig. 4. It is difficult for particles whose

- . . ) . — o ~ ~ 39S, dHq
equilibrium trajectories achieve a maximum radigs: p;, to H(I,0)=Ho(I)+ eH1(I,0) +e— —. (48)
gain enough energy to exceed the radijs As the particle a0 4

gains energy and is pushed towaﬁfi,s the parametric driv-
ing term approaches zero, thereby cutting off the energyote thatgH,/dJ=w(J). Separating the perturbed quanti-
gain. This increasing density of nodes stratifies the beam int@es into constant-) and fluctuating -} portions, the assump-

“zones” between nodes, preventing all but those test iongjon that the fluctuations are higher order requires that we

sampling the outermost zone from gaining sufficient energyhooses, to cancel the fluctuations to this order, which
to be expelled. In addition, from Fig. 4 it is clear that the gjyes

outermost zoned(,1), between the last node and the beam

radiusr = 1, shrinks to zero thickness asincreases ang, S, S,
—1. Then=1 andn=2 collective modes have the largest —tw—=—{Hq}. (49
zones capable of expelling particles easily from the beam. Js a0

The perturbation treatment consists of finding a transfor-
mation which pushes the perturbations in the Hamiltonian to When we Fourier expan8, and; in the timelike vari-
higher order, which can then be neglected, leaving an inteables, this gives forS;
grable, approximate, lower-order Hamiltonid@0]. This

simpler system will then be used to estimate the range of Him(3)
normally confined particles inside the beam edge which carg,= > §/"= | — 2 expli(19+ mw,s)},
sample the highly nonlinear region exterior to the beam. (m#(0,0 lw(J)+mw,

The one-dimensional nonautonomous Hamiltonian for the (50

beaminterior, H(X,p,s), is defined in Eq.(37), wherep
denotegdx/ds. The position and momentum are transformedwhere the individualH'l’m components are defined by
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13 2 J? cally verified to be conserved to within a few percent. This

2H2'ﬂ=§ w 1022 small fluctuating error can be accounted for in higher orders.
The perturbed orbit in the physical coordinatesp) is
pp2iEl 1J N 3 - given from Eq.(44) by x(s) = \/23(3)/(» siné(s). By assum-
Vo 4 4 0® (52) ing thatJ(s) and sind(s) can be maximized independently,
) the maximum value of(s), which we denote byl*, thus
oAl i J_ places an absolute upper bound on the trajectory excursion.
! 32 0?’ The largest radial excursia® by this estimate is
Since the perturbation iH has a vanishing average, there is ~
0,0 . 2]
no constant;" term, and the perturbed frequency remains X* = (55)
w

unchanged to this, or any, order. In addition, EG) and

(51) show clearly the resonances@$/w= *2,4 discussed _
in Sec. IIIA2. HereJ* =J+ €J7 from Eq.(52), whereJj is the maximum

of Eq. (54). If the ratio of frequencies is irrational, thenJ;
in Eq. (54) eventually passes arbitrarily close to the limiting
value

The new invariang is given by the transformations in Eq.

(47),

3(3,0,5)=3+€);=J—€d S =I— e, iISI™, (52

-2
+ 4H‘1"1(
w

w(2+a)  e2-a 4+ a)

andJ, is found to be
. (56

Jy=2H7*

- ~ +—

(exp{i(20+wzs)} exdi(—20—w,S)] w(4—a)
2w+ —2w—

T o2 @@ Equations(55) and (56) constitute a simple estimate of

the maximum interior radial excursion of test ions when

launched with different initial actions, and hence different

. expli(260— w,s)} . expli(— 260+ w,a)}

20— w; —20+w; initial radii, consistent with Eq(44). In practice, the compli-
o _ ~ cated interdependence afand 6 on the unperturbed action
41 expli(40+ w,s)}  expli(—40— w,ys)} and time(J, 9 makes Eq(55) an overestimate, although Eq.
4H, 4w+ w, —4do—w, (56) is numerically found to be very accurate. Small numeri-

cal coefficients to make the theory more accurate will be
discussed in Sec. IV. Other complications are considered in
)_ (53)  Appendix A.
The estimation in Eq(55) of the maximum excursion of a

expli(46— w,S)}  expli(—40+ w,s)}
+ +
do—wsy —4o+ o,

~ test ion in a beam perturbed with collective modes provides
In Eq. (53) we may approximat# by the unperturbed angle a simple way to make a guess at the time scale for a test
orbit,TQ: 6= ws+ 6y, and the error will appear only id,. particle to move to the orbit farthest from its equilibrium
The expression fob correct to first order may be obtained trajectory. It was assumed |n_S|mpI|fy|ng 5@4) to obtain
from the transformations in Eq47) and the expression for Ed- (56) that the terms with frequencies {2v)w,(2
S, in Eq. (50), but this is less important for our purposes —a)w,.... Would'eventually congtructlvely interfereRecall
here. We define the ratio of the frequencies of the2 that « is the ratio of the collective mode frequency to the
mode and the depressed transverse oscillation frequency f§Pressed particle transverse frequeritiie time scale for a

be a=w,/w. Expressing the exponentials in terms of trigo- particle to maximize its energy gain, qnq possibly move out
nometric functions, Eq(53) reduces to of the beam, can be estimated by judiciously choosing a

rational numbem/n near (2+ «)/(2— «). The time scale is

) then on the order omT_, whereT_=2#/(2— a)w. This
J1=2H1'1<msir[(2+ a)ws]+ w(2=a) provides a fairly accurate estimate for particles inside the
beam, providedn andn are selected without demanding that
(2+ a)/(2— @) matchm/n too precisely.
- aqf 2 W ly the estimate of maximum traject i
Xsin(2— a)ws] | +4HP| ——— ~ We now apply the estimate of maximum trajectory excur
o(4+a) sions, Eq.(55), to calculating which particles near the edge

of the beam will gain enough energy to leave the beam core
. , at some point in their trajectory. The most important param-
Xsin(4+ a)ws]+ w(4—a) 3|r{(4—a)ws]). eter in this investigation ig= 8,(w3— »?), the strength of
then=2 collective mode. The objective is to find the radial
(54)  value xg at which a particle, launched with initial energy
) ) ) _ . equivalent to an unperturbed maximum radX, gains
With appropriate phase adlustments to account for '”'t'alenough energy to just reach the beam eflgaunching par-
conditions, the new invariani(J,s) in Eq. (52) is numeri- ticles with zero initial radial velocity, which we assume is
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FIG. 5. Plot ofXg as a function of" (in %) for 22=1/4. FIG. 6. Comparison of adjusted analytical predictisalid line)

and numerical solutiongdotted ling of the minimum radius for
the case, makes the initial radial valggequal to the maxi- expulsion. Plot oiks versusl’ (in %).

mum unperturbed value, and implids= 1/2wx?, from Eq. R — s

(44).] V_\/e Eill_fs the stri_pping radius 'I;hat_is,_the maximum 3?2%?22\'1"25: g/Tatsl;m ;jr?dpegztj:odn;z)?f fsrf +a;%)(,:ief\|lcﬁgrgy

excursionx ™ is a function ofxy, andx,=Xg is defined by d§1=w3(64— 2002+ o*), anda=w,/w. Equation(58) by

(57) itself is not sufficiently accurate, but with the small numeri-
cal adjustments discussed in Sec. IV A, it gives, within a few

percent accuracy over a wide range of parameters, the radial

extent of the region near the beam edge from which particles

will be ejected from the beam. Equati¢h8) can be con-

verted from being a function of the small parameteio a

function of 55=T, the ratio of the rms electrostatic energies

X*(xg)=1,

or equivalently,x* (xg) =Ry. Particles with maximum un-
perturbed radiux,>Xg are able to sample the region exte-
rior to the beam—at which point the Hamiltonian in E§7)
becomes invalid—even thougky<1, and thus have their
motion partially described by E@26), valid forx>1. Once . . . 2
sampling the highly nonlinear exterior region, the particlesm_ the mode and in the beam core, usieg 22(w°_w2)'
have the potential for large energy gains. These energy gaingduré 5 shows a plot ofs as a function ofs;, calculated
are explored in Sec. IV. Particles with smaller energies willfrom Eq. (58) without numerical adjustments. The range of
nonresonantly gain energy and then give it up. pz_irtlcles_ Whlch sample the beam exterlpr is of course zero
To find this minimum radius for expulsion, EG57) is with vanishing mode strength, and constitutes approximately
20% of the beam transverse cross section wher0.05 (so
that the energy in the perturbative mode is about 5% of the
energy in the beam equilibrium

substituted in Eq(55), where we evaluaté* in Eq. (56) at
Xs using,J—>1/2wxﬁS. The result of some simple algebra is

_ —(1+edy) +[(1+edp)®+2ed; 0]

— IV. NUMERICAL RESULTS
Xg cod (58
L A. Numerical correction factors for ejection radius estimate
The constantsl; and d, in Eg. (58 depend only on the In order to make Eq(58) more useful, we insert the small

depressed transverse frequency and mke2 mode fre- (compared to unityfactors{\,,\,,\3} according to

—[14e(1+N)dy] = {[1+ e(1+N,)dp]2+2e(1+ N\ 3)d 0} 2

ewd;

<2 _—
XS_

(59

To ensure that the analytical prediction retains the property B. Comparison ofn=1 mode and envelope mismatch
that no particles are expelled when there is no collective Test ion behavior under the influence of s 1 collec-
mode, we require that the expression¥érapproaches unity  tiye mode and a linearized envelope mismatch are distin-
ase vanishes. We expand for smaliland set the coefficient gyished in practice solely by the definitions of “inside” and
independent ok equal to unity: this implies that,=—X\;  «gytside” the beam. Fon=1, inside the beam corresponds
and\3=4/3\;. When the coefficient¢r;} are small com- o {x:x<R,}. For a mismatch, inside the beam corresponds
pared to unity, Eq(59) is a small adjustment to E¢58). to {X:X<Rg(1+ 8,COSweS)}, or, more accurately{x:x

A typical plot comparing numerical solutions of the test <R(s)}, whereR(s) is the exact solution to the envelope
equations for the unperturbed initial radius of particles justequation Eq.(4). (In addition, the mismatch frequenay,
excited to the beam edge and the analytical-numerical predepends on the amplitude for large mismatches, while the
diction, for \;=0.2, is given in Fig. 6. The overall rate of n=1 frequencyw,; does no.
growth of the range of expulsion is captured by Fig. 6, even Since, as mentioned in Sec. Il A, the beam boundary in
if the details(linear initial growth are not. phase space is an invariant torus for ftfielly nonlinean
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FIG. 7. Indefinitely confined test ion trajectoffight line) inside
a beam(dark line launched at four times the rms-matched value I
Rims. The beam waist is approximately OR5. é

mismatch, whereas it is not for thre=1 mode, the behavior D W S ;
of test ions can differ dramatically in the two cases. As an 18 10 05 00 05 1.0 15
indication of this, Fig. 7 shows that even for very lamés-  (q) T
matchesof the beam edge, particles initially confined inside
the beam energy surface remain confined for all tifidis T
is only true using the fully nonlinear envelope equation Eq. _ e
(4) to determine the evolution dR(s) in the test ion equa- .
tion of motion Eq.(24). See Appendix B. L.'-,-*
For then=1 collective modehowever, interior particles : K
can easily escape the beam. Figure 8 shows the maximui
excursion as a function of mode amplitude of a test particle
launched ak,=0.95. The particle is expelled from the beam .
interior at low mode amplitudes, and can gain substantia &
energy at higher amplitudes.

C. Maximum excursion oL

In addition to having worse confinement properties, the .
collective modes facilitate energy gain by halo particles al- ‘ “a s
ready outside the beam much more than the envelope mis YL
match, linearized or not. Particles that start outside of a bean -4 L TR ae
with an envelope ripple gain very little ener§¥1] due to
densely packed KAM surfaces in the region of phase spac I e R T
exterior to the beam. This is true, with full nonlinear mis- -
match effects, even for very large mismatches, measured b(P)
the envelope mismatch parameter, the ratio of maximum
beam radius to rms radiug,.. (For small mismatches\,
2_1/256') The CO!IeCt'Ve modes, however, are very Con(_ju'collective mode. Both perturbations have rms electrostatic energies
cive to energy gain due to KAM curve breakup in the region, hich are 5% of the beam core energy.
exterior to the beam’s phase space. In one-dimensional non-
autonamous dynamical systems, a phase space spanniggin, and corresponds to an integral of the motion. As pa-

curve (KAM curve) forms a boundary to motion and energy rameters are varied, these curves can come into and go out of
existence, leading to dramatically different trajectory behav-

ior. If a KAM curve is destroyed, a particle trajectory can

FIG. 9. Phase space structures for two differing perturbations:
(a) mismatched beam with no other perturbations, @odn=1

225 stochastically explore a large region of phase space, corre-
5 sponding gaining more energy and larger maximum excur-
sion. Figure 9 shows the phase space structure for a small
= 175 i :
T envelope mismatch and ar=1 mode with an equal amount
L5 of electrostatic energy. The limitations to energy gain outside
1.25 the fully nonlinear mismatched beam are evident from this
1 Poincareplot, and the lack of limitations for the=1 mode,

are contrasted in Fig. 10. For the former, a KAM curve
I' (%) clearly constrains a particle with initial radiug=1.1 to
negligible energy gain for very large mismatch parameter,
FIG. 8. Plot of the maximum excursion of a test particle as aA,=1.3. For the latter, the maximum excursion of test ions
function of mode energy’ (in %). The test ion was launchedat  increases rapidly with mode amplitude, particularly as KAM
=0.95. The dashed line is the beam edg®atl. surfaces are destabilized.
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L1t 2
0.5 1 15 2 0.2 0.3 0.4 0.5
(@) (Rmaz — ers)/ Ryms 7
2.5 FIG. 12. Plot of first critical energy’;, as a function of space-
295 charge factow with x,=0.95.
2 = — _ .
= X; does not depend oRg, this is the largest radius any
1.75 particle initially in the beam can escape to, and functions as
15 a KAM curve, giving an indication of the phase space struc-
ture in the halo region.
1.25 . ; , - .
0 3 0 15 0 35 Finally, for intense beams with sufficiently large ampli-
) I (%) tude modes, this phase-space spanning curve can be destabi-

lized and broken into islands. Above a critical enefgy,

FIG. 10. Maximum excursion of a test ion versus relative rmsparticles can explore out t&,=2 (see Fig. 138 It is plau-
energy for two different perturbations witit=1/3. The two cases Sible that, for extremely intense beams, larger collective
correspond tqa) mismatched envelopghe jump corresponds to a mode amplitudes would make accessible even greater re-
large mismatch parameter Bf=2.3R,,d, and(b) n=1 collective ~ gions of phase space.
mode.

V. CONCLUSIONS AND FUTURE WORK

Particles whose energy corresponds to a maximum unper- )
turbed trajectory, which we denotg, betweenx, and 1, This paper has presented a method of halo formation
will be ejected by the collective modes from the beam at@sed on collective mode excitations, providing possible pro-
some point, with the possibility of large energy gains. InC€sses both for expelllng p_artlcles from the beam core and a
general, ejected particles eith@) experience negligible en- Means of accelerating particles once they are able to sample
ergy gains, ofii) obtain a well-defined maximum excursion the exterior region.

. . . Collective modes using the fluid model of Lund and
X1=1.5. This behavior is a function of space-charge depres- "~ L . .
sion v, rms field energy in theith mode relative to rms Davidson[15] allow the derivation of test ion equations of

electrostatic energy in the beam cofe=&,/&,, and the motion in the beam interior and exterior regions. The behav-
== onlc0s : . . L .
: e ; ior of particles which remain interior to the beam can be
eje'(::gerd rgggédiﬁelﬁni% esrtlljergsdtrr]‘r; iXIglucrgrtr;;ﬁeritical ener analyzed theoretically, and we have calculated perturbed or-
T, (v.%), particles '?ravel no further than a few percentRf Nits for particles subject ta=1 and 2 mode perturbations.
1V, Xo), P i X P . This provides estimates regarding the range of initial condi-
outside of the beam; for energies greater than particles

) i tions for which particles will be expelled from the beam.
consistently travel as far out a&=1.5 (see Fig. 11 The  Regonances for meridional particles are found to be unim-

value ofI'y decreases asothe beam becoTes more intensgertant, while a class of particles with nonzero angular mo-
ranging from less than 2% at®=1/5 to 15% afr’=1/2.  mentum are found to participate in resonant behavior.

(See Fig. 12.1n addition, particles with, further from the Once expelled from the beam, numerical methods are re-

beam edge have higher critical energies, and of course pagyired, which indicate that KAM curves confine particles

ticles with xo<<Xx, never leave the beam. The value %f  within 1.5 times the beam radius for moderately low mode

gradually increases with, and depends weakly on Since  amplitudes, but are successively destabilized for higher am-
plitudes.

1.8
1.6

S]]

1.4
12

[‘(%) 0 5 10 15 20 25

I'(%)
FIG. 11. Plot ofXpay versusI' (in %) for 2=1/3 with Xq
=0.99(@) andxy=0.95(A). FIG. 13. Plot 0fX, versusl (in %) for v2=1/5.
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An issue which remains to be explored is the time scal&erms with 4 frequencies for thath collective model. It is
over which particles are ejected from the beam and gaiRjifficult to reliably maximize this expression, even using
significant energy. While collective modes have the potentiaBessel-like expansions of the sj(s) term. Indeed, the maxi-
to affect large classes of particles, if the energy gain occurghum excursion behaves in a sufficiently complicated way
slowly compared to other expulsive processes, or if it ocCurshat it is unlikely that any simple analytical approximation
slowly enough to be easily remedied by collimation, collec-wjl| capture all relevant behavior. This difficulty in maximiz-
tive modes may not be a serious concern. ing the expressions is therefore handled by introducing the

It appears difficult to estimate the time scale for expulsionhnumerical coefficients in Sec. IV A.
analytically. While the discussion in Sec. IlIB of the ap-  |n addition, in the method used here, the fact that particles
proximate time to maximize a test ion’s energy gain providesapproach close to the only nonzero node fornke2 collec-

a useful measure for the expulsion of test particles inside thg, e mode,p=\/2/3, but no further, is contained in this in-

beam, particle acceleration to high energies cnatsidethe . " ~
beam is also an important issue. The acceleration of such te{[ﬁrdgpendence. That is, the “interference” betwelt(s)

particles can only be estimated numerically. andé(s) not only makes E¢(55) an overestimate, but makes
In addition, the sensitivity of the particle dynamics to the e maximum radial excursion as a function of initial energy
various assumptions made in the model is a subject for futur@€have in a complicated fashion near the nodes. Away from
study. While space-charge dominated beams are nearly urff?@ node, at the beam edge, the numerical factors can account
form in density out to the beam radil after which the for this overestimate. o _
beam density falls abruptly to zero, a small region within a Another complication is the violation of the assumption
few Debye lengths at the beam edge has a highly nonunifordf1at the the mode oscillation is fast compared to the trans-
density, and hence nonlinear fields. Several autf@rsave  Verse trajectory oscillation. Although this holds over the en-
noted the effects of including the abrupt falloff at the beamtire oscillation, the mode may not oscillate quickly enough
edge. Initial numerical simulations which replace the shargdOr the force to average to zero over a particular section of
beam edge with a falloff over a short but finite distance,ihe trajectory. In particular, the test ion, between passing the
assuming the same form for the collective modes, indicat&ode p5=1/2/3 and reaching its maximum excursion, may
that the effect is not significant on the main features of parexperience a force of the same sign. The Hamiltonian
ticle behavior found in Poincarplots. Another important Method above would require interference from higher order
assumption in the model is the smooth-focusing approximabarmonics to accurately approximate this force which ap-
tion: although the functional forms for finite bunch collective Pears quasisteady on a short time scale. The result is that
modes have been derivd@1], it is uncertain what affect particle trajectories in a sufficiently slow collective mode,
using these more realistic periodic-focusing models wouldelative to the transverse oscillation, have their energy gain
have on the present results. Recent numerical work byemporarily underestimated, and can move out of the beam
Glucksternet al.[22] indicates that three-dimensional bunch more easily than analytically predicted. To estimate when
dynamics play an important role in halo formation. this happens, we compare the tirfig between a typical
unperturbed test ion’s passing the n(ﬁ}aand reaching its
maximum unperturbed excursion halfway between the node
and the beam edge, and a collective mode half-period@,1/2
This work was Supported by the Department of Energywe find tha_.t a test ion will eXperience a force averaging to
and in part by the Office of Naval Research. zero whenr<0.25. Numerical studies confirm that, under
the opposite condition’>0.25, moderate amplitude modes

can expel particles from the beam almost immediately once
APPENDIX A: COMPLICATIONS IN THE ANALYTICAL they are able to pass the node.

ESTIMATE
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APPENDIX B: USE OF THE LINEARIZED ENVELOPE

Equationg55) and(56) form an analytical estimate of the EQUATION

radial extent of the region from which particles will be
ejected from the beam. It is unsatisfactory for several rea- The statement that interior particles are confined for all

sons. Equatiorf55) is based upon the assumption tdas) ~ time in an envelope mismatch is only true using the fully
and sind(s) can be independently maximized, but this is im- nonlmefar envelope equation Ee in the test fon equation
possible because of the Hamiltonian constraint of area pre§’-f motion  Eq. _(24)' Since the expanser(s)_:_R_O(l .
ervation. The new action and angle generated by the neaf- 1/28 Cosw,s) is near the beam .edge fpr small |r_1|t|all d'f'
identity transformations in Eq(47) are individually quite turba,r,‘lces from the matched rad.|u.s, this ‘expansion 1S al-
accurate and are separately easy to maximize. It is difficulf"ost” an energy surface. Where it is a valid expansion, par-

using elementary techniques, however, to determine thicleS may travel a small distance out of the beam, but do not
maximum excursion in the original radial variab(s) gain a significant amount of.energy. If the Imean_zed expres-
B \/_7 o~ o — —  sion for the beam envelopg is used for laiye particles can

=V2J(s)/wsind(s). This is due to the fact thal and ¢  eynerience very large gainéThe exact envelope confines

depend in a complicated way on the timelike coordmiate particles for any size mismatch, as is evident from Fig. 7.
The J dependence is given in Eq&4) and (52). The §  Thus, predictably, the linear expansion behaves “nicely” for
dependence can be determined from @g), and has a simi- small perturbations, but becomes unphysical for large mis-
lar form. The valuex(s) then takes the schematic form  matches even though solutions to the full nonlinear equations
=f(s)sing(s) wheref(s) andg(s) each have trigonometric continue to be well behaved.
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A similar statement might conceivably be made about thesure of smallness is that the energy in the perturbative modes
linearized collective modes used here, namely, that the debe small compared to the field energy of the unperturbed
eterious effects are due to using linearized modes in a situdseam, it is possible to introduce perturbations on realistic
tion where the full nonlinear perturbative structure wouldintense beam equilibria which have significant effects on
remain well behaved. However, since the appropriate megparticle behavior despite their small amplitude.
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